DOI QR코드

DOI QR Code

Bulk Polymerization of L-lactide with Mixed Aluminum Organometallic Catalysts

Al계 유기금속화합물 혼합촉매 시스템을 이용한 L-lactide 벌크중합 특성 연구

  • Noh, Yee-Hyeon (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young-Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2011.06.14
  • Accepted : 2011.11.25
  • Published : 2012.01.25

Abstract

The differences between single and mixed aluminium catalyst systems in the bulk polymerization of L-lactide were studied. $Al(O-i-Pr)_3$, TMA, TOA and TIBA were employed for the mixed-catalyst systems, and TIBA was chosen as a reference catalyst. For the $Al(O-i-Pr)_3$/TIBA catalyst system, the conversion of polymerization increased as the composition of $Al(O-i-Pr)_3$ in the mixed catalyst increased. The molecular weight of the resulting PLA reached to about 13000 g/mol, and the polydispersity index of the polymer from the $Al(O-i-Pr)_3$/TIBA catalyst was slightly increased than that of single catalyst. The higher molecular weight tail or shoulder was revealed in the GPC curve. The conversion of the TOA/TIBA catalyst system decreased as the composition of TOA in the mixed catalyst increased. The molecular weight of PLA prepared with TOA/TIBA catalysts increased up to 14000 g/mol. The Al compounds-mixed catalysts could produce a higher molecular weight tail or shoulder in the GPC curve, which may result in enhancement of mechanical properties of PLA.

본 연구에서는 Al 계 화합물 혼합촉매 시스템의 L-lactide 벌크중합을 통해 단일 Al계 화합물과 혼합된 Al계 화합물의 중합 특성의 차이를 확인하였다. Al 화합물 촉매를 조성비를 변화시킨 혼합촉매를 사용하여 벌크중합한 polylactic acid (PLA)는 FTIR, DSC, GPC 등으로 분석하였다. 선정된 Al계 화합물로는 aluminum isopropoxide($Al(O-i-Pr)_3$), trimethylaluminum(TMA), trioctylaluminum(TOA), triisobutylaluminum(TIBA)이었으며 TIBA를 기준 촉매로 선정하여 나머지 세 Al화합물을 각각 혼합하여 사용하였다. $Al(O-i-Pr)_3$와 TIBA를 혼합한 촉매의 경우 혼합촉매 내 $Al(O-i-Pr)_3$의 양이 증가함에 따라 전환율도 증가하였고 생성된 PLA의 분자량은 13000까지 증가하였으며 분자량분포도도 약간의 증가를 보였다. 분자량 분포곡선은 혼합촉매 시스템의 경우 고분자량 부분에서 약간의 tail 또는 shoulder 형태가 형성되었다. TOA와 TIBA를 혼합한 촉매를 이용하여 L-lactide를 벌크중합한 결과 전환율은 혼합촉매 내 TOA의 양이 증가함에 따라 낮아졌다. TOA와 TIBA를 혼합한 촉매를 이용하여 벌크중합한 PLA의 분자량은 혼합촉매 내 TOA 조성이 60 mol%까지 분자량이 14000 g/mol까지 증가하다가 감소하였다. 이러한 Al계 혼합촉매 시스템을 통해 PLA의 고분자량 tail이나 shoulder을 생성할 수 있었으며 이를 통해 PLA의 기계적 물성을 향상시킬 수 있는 역할을 기대할 수 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Y. H. Kim and S.H. Kim, J. Korean Ind. Eng. Chem., 3, 386 (1992).
  2. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  3. E. Chiellini and R. Solaro, Adv. Mater., 8, 305 (1996). https://doi.org/10.1002/adma.19960080406
  4. X. J. Yu, E. A. Botchwey, E. M. Levine, S. R. Pollack, and C. T. Laurencin, Proc. Natl. Acad. Sci. USA, 101, 11203 (2004). https://doi.org/10.1073/pnas.0402532101
  5. Y. Hayashi, S. Yoshioka, Y. Aso, A. L. W. Po, and T. Terao, Pharm. Res., 11, 337 (1994). https://doi.org/10.1023/A:1018936314861
  6. S. Mecking, Angew. Chem. Int. Ed., 43, 1078 (2004). https://doi.org/10.1002/anie.200301655
  7. H. Roper and H. Koch, Starch/Staerke, 42, 123 (1990). https://doi.org/10.1002/star.19900420402
  8. N. L. Holy, Chem. Technol., 21, 26 (1991).
  9. Z. Tang and V. C. Gibson, Eur. Polym. J., 43, 150 (2007). https://doi.org/10.1016/j.eurpolymj.2006.09.023
  10. A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003). https://doi.org/10.1021/bm034247a
  11. K. B. Aubrecht, M. A. Hillmyer, and W. B. Tolman, Macromolecules, 35, 644 (2002). https://doi.org/10.1021/ma011873w
  12. Z. H. Tang, X. S. Chen, Q. Z. Hang, X. C. Bian, L. X. Yang, L. H. Piao, and X. B. Jing, J. Polym. Sci. Part A: Polym. Chem., 41, 1934 (2003). https://doi.org/10.1002/pola.10740
  13. C. J. Chuck, M. G. Davidson, A. D. Jones, K. K. Gabriele, M. D. Lunn, and S. Wu, Inorg. Chem., 45, 6595 (2006). https://doi.org/10.1021/ic060969+
  14. A. Amgoune, C. M. Thomas, and J. F. Carpentier, Macromol. Rapid Commun., 28, 693 (2007). https://doi.org/10.1002/marc.200600862
  15. M. Ajioka, K. Enomoto, K. Suzuki and A. Yamaguchi, J. Environ. Polym. Degrad., 3, 225 (1995). https://doi.org/10.1007/BF02068677
  16. M. Ajioka, H. Suizu, C. Higuchi and T. kashima, Polym. Degrad. Stabil., 59, 137 (1998). https://doi.org/10.1016/S0141-3910(97)00165-1
  17. P. Degkee, P. Dubois and R. Jerome, Macromol. Chem. Phys., 198, 1985 (1997). https://doi.org/10.1002/macp.1997.021980624
  18. R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, J. Macromol. Sci., Part C: Polym. Rev., 45, 337 (2005).
  19. K. J. Zhu, X. Lin, and S. Yang, J. Appl. Polym. Sci., 39, 19 (1990).
  20. H. Tsuji, Macromol. Biosci., 5, 569 (2005). https://doi.org/10.1002/mabi.200500062
  21. K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresource Technology, 101, 8493 (2010). https://doi.org/10.1016/j.biortech.2010.05.092
  22. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 23 (2000).
  23. K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988). https://doi.org/10.1016/0032-3861(88)90116-4
  24. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004). https://doi.org/10.1002/mabi.200400043

Cited by

  1. Polymerization of L-lactide Using Methylalumionxane vol.39, pp.3, 2015, https://doi.org/10.7317/pk.2015.39.3.365