DOI QR코드

DOI QR Code

Foaming of Poly(butylene succinate) with Supercritical Carbon Dioxide

초임계 이산화탄소를 이용한 Poly(butylene succinate) 발포

  • Son, Jae-Myoung (Department of Polymer Science and Engineering, Inha University) ;
  • Song, Kwon-Bin (Department of Polymer Science and Engineering, Inha University) ;
  • Kang, Byong-Wook (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Kwang-Hee (Department of Polymer Science and Engineering, Inha University)
  • 손재명 (인하대학교 고분자공학과) ;
  • 송권빈 (인하대학교 고분자공학과) ;
  • 강병욱 (인하대학교 고분자공학과) ;
  • 이광희 (인하대학교 고분자공학과)
  • Received : 2011.05.27
  • Accepted : 2011.08.29
  • Published : 2012.01.25

Abstract

The foaming of poly(butylene succinate) (PBS) using supercritical $CO_2(scCO_2)$ was studied. In order to improve the melt strength, PBS was modified using the reactive compounding technique. Rapid decompression of $scCO_2$-saturated PBS at a temperature above the depressed $T_m$ yielded expanded microcellular foams. The resulting foam structure could be controlled by manipulating process conditions. Experiments varying the foaming temperature while holding other variables constant showed that higher temperatures produced larger cells and reduced cell densities. Higher saturated pressures led to higher nucleation densities and smaller cell sizes. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger cells were obtained.

초임계 $CO_2(scCO_2)$를 사용하여 poly(butylene succinate) (PBS)를 발포하였다. PBS는 용융 강도를 높이기 위하여 반응 컴파운딩 기법으로 개질하였다. $scCO_2$로 포화된 PBS를 강하 융점 이상의 온도에서 빠르게 압력을 낮춤으로써 미세기포 발포체를 제조하였다. 발포체의 구조는 공정 조건을 변화시켜 제어할 수 있었다. 다른 변수들은 고정하고 발포 온도만 변화시킨 실험은 발포 온도가 높을수록 셀 크기는 증가하고, 셀 밀도는 감소함을 보여주었다. 포화 압력이 클수록 기핵 밀도가 높아졌으며, 그 결과로 셀의 크기는 감소하였다. 감압 속도가 느린 경우에는 셀이 장시간 동안 팽창함으로써 보다 큰 셀이 얻어졌다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. D. Klempner and K. Frisch, Handbook of Polymeric Foams and Foam Technology, Oxford Univ. Press, New York, 1991.
  2. L. T. Guan, M. Xiao, Y. Z. Meng, and R. K. Y. Li, Polym. Eng. Sci., 46, 153 (2006). https://doi.org/10.1002/pen.20460
  3. R. W. Lenz, Adv. Polym. Sci., 107, 1 (1993). https://doi.org/10.1007/BFb0027550
  4. D. J. Kim, S. W. Kim, H. J. Kang, and K. H. Seo, J. Appl. Polym. Sci., 81, 2443 (2001). https://doi.org/10.1002/app.1686
  5. S. S. Ray, K. Okamoto, and M. Okamoto, J. Appl. Polym. Sci., 102, 777 (2006). https://doi.org/10.1002/app.23940
  6. A. K. Mohanty, L.T. Drzal, and M. Misra, Polym. Mater. Sci. Eng., 88, 60 (2003).
  7. J. A. Ratto, P. J. Stenhouse, M. Auerbach, J. Fitchel, and R. Farell, Polymer, 40, 6777 (1999). https://doi.org/10.1016/S0032-3861(99)00014-2
  8. X. Liu, C. Li, D. Zhang, Y. Xiao, and G. Guan, Polym. Int., 55, 545 (2006). https://doi.org/10.1002/pi.2006
  9. Z. M. Xu, X. L. Jiang, T. Liu, G. H. Hu, L. Zhao, Z. N. Zhu, and W. K. Yuan, J. Supercrit. Fluids, 41, 299 (2007). https://doi.org/10.1016/j.supflu.2006.09.007
  10. D. Y. Hwang, K. D. Han, D. Hong, K. I. Lee, and K. Y. Lee, Polymer(Korea), 24, 529 (2000).
  11. K. N. Lee, Y. J. Suh, H. J. Lee, and J. H. Kim, Polymer(Korea), 23, 181 (1999).
  12. S. K. Goel and E. J. Beckman, Polym. Eng. Sci., 34, 1137 (1994). https://doi.org/10.1002/pen.760341407
  13. S. K. Goel and E. J. Beckman, Polym. Eng. Sci., 34, 1148 (1994). https://doi.org/10.1002/pen.760341408
  14. K. A. Arora, A. J. Lesser, and T. J. MaCarthy, Macromolecules, 31, 4614 (1998). https://doi.org/10.1021/ma971811z

Cited by

  1. foaming technology vol.32, pp.11, 2014, https://doi.org/10.1177/0734242X14545375
  2. Foaming behavior of bio-based blends based on thermoplastic gelatin and poly(butylene succinate) vol.132, pp.48, 2015, https://doi.org/10.1002/app.42704
  3. Preparation of biodegradable poly(butylene succinate)/halloysite nanotube nanocomposite foams using supercritical CO2 as blowing agent vol.22, pp.9, 2015, https://doi.org/10.1007/s10965-015-0811-6
  4. Effect of PBAT on physical, morphological, and mechanical properties of PBS/PBAT foam vol.39, pp.1, 2020, https://doi.org/10.1177/0262489319873859