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SOME ISOMORPHIC PROPERTIES OF NEAR-RINGS

YONG UK CHO

Abstract. In this paper, we denote that R is a near-ring and G an R-
group. We initiate the study of faithful R-group, the substructures of R
and G, also quotients of substructure relations between them. Next, we
investigate some isomorphic properties of near-rings and R-groups.
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1. Introduction

A near-ring R is an algebraic system (R,+, ·) with two binary operations +
and · such that (R,+) is a group (not necessarily abelian) with neutral element
0, (R, ·) is a semigroup and a(b + c) = ab + ac for all a, b, c in R. We note that
obviously, a0 = 0 and a(−b) = −ab for all a, b in R, but in general, 0a 6= 0 and
(−a)b 6= −ab.

If R has a unity 1, then R is called unitary. An element d in R is called
distributive if (a+ b)d = ad+ bd for all a and b in R.

An ideal of R is a subset I of R such that (i) (I, +) is a normal subgroup of
(R, +), (ii) aI ⊂ I for all a ∈ R, (iii) (I + a)b − ab ⊂ I for all a, b ∈ R. If I
satisfies (i) and (ii), then it is called a left ideal of R. If I satisfies (i) and (iii),
then it is called a right ideal of R.

On the other hand, an R-subgroup of R is a subset H of R such that (i) (H, +)
is a subgroup of (R, +), (ii) RH ⊂ H and (iii) HR ⊂ H. If H satisfies (i) and
(ii), then it is called a left R-subgroup of R. If H satisfies (i) and (iii), then it is
called a right R-subgroup of R. In case that (H, +) is normal in above, we say
that normal R-subgroup, normal left R-subgroup and normal right R-subgroup
instead of R-subgroup, left R-subgroup and right R-subgroup, respectively. Note
that the normal left R-subgroups of R are equivalent to the left ideals of R.
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We consider the following substructures of near-rings: Given a near-ring R,
R0 = {a ∈ R | 0a = 0} which is called the zero symmetric part of R,

Rc = {a ∈ R | 0a = a} = {a ∈ R | ra = a, for all r ∈ R} = {0a ∈ R | a ∈ R}

which is called the constant part of R, and Rd = {a ∈ R | a is distributive}
which is called the distributive part of R.

A non-empty subset S of a near-ring R is said to be a subnear-ring of R, if S
is a near-ring under the operations of R, equivalently, for all a, b in S, a− b ∈ S
and ab ∈ S. Sometimes, we denote it by S < R.

We note that R0 and Rc are subnear-rings of R, but Rd is not a subnear-ring
of R. A near-ring R with the extra axiom 0a = 0 for all a ∈ R, that is, R = R0 is
said to be zero symmetric, also, in case R = Rc, R is called a constant near-ring,
and in case R = Rd, R is called a distributive near-ring.

Moreover, we note that R0 is a right ideal of R, but not generally ideal of R,
also Rc is an R-subgroup of R, but in general neither a right nor a left ideal of
of R.

Let (G,+) be a group (not necessarily abelian). We may obtain some exam-
ples of near-rings as following:

First, if we define multiplication on G as xy = y for all x, y in G, then (G,+, ·)
is a near-ring, because (xy)z = z = x(yz) and x(y+ z) = y+ z = xy+xz, for all
x, y, z in G, but in general, 0x = 0 and (x+ y)z = xz + yz are not true. These
kinds of near-rings are constant near-rings.

Next, in the set

M(G) = {f | f : G −→ G}
of all the self maps of G, if we define the sum f + g of any two mappings f, g
in M(G) by the rule x(f + g) = xf + xg for all x ∈ G and the product f · g by
the rule x(f · g) = (xf)g for all x ∈ G, then (M(G),+, ·) becomes a near-ring.
It is called the self map near-ring on the group G. Also, we can define the
substructures of (M(G),+, ·) as following: M0(G) = {f ∈ M(G) | 0f = 0} and
Mc(G) = {f ∈ M(G) | f is constant}.

For the remainder concepts and results on near-rings, we refer to G. Pilz [5].

2. Some isomorphic properties of near-rings and R-Groups

Let R and S be two near-rings. Then a mapping f from R to S is called a
near-ring homomorphism [5] if (i) (a+ b)f = af + bf, (ii) (ab)f = afbf, for all
a, b ∈ R. Obviously, Rf < S and Tf−1 = {a ∈ R| af ∈ T} < R for any T < S.
As in ring theory, Rf is called the image of f which is denoted by Imf , also,
{0}f−1 = {a ∈ R| af = 0} is called the kernel of f which is denoted by Kerf .

We can replace homomorphism by monomorphism, epimorphism, isomor-
phism, endomorphism and automorphism, if these terms have their usual mean-
ings as in ring theory [1].
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Let R be any near-ring and G an additive group. Then G is called an R-group
if there exists a near-ring homomorphism

θ : (R,+, ·) −→ (M(G),+, ·).
Such a homomorphism θ is called a representation of R on G. We denote it by
GR.

We may write that xr (as a scalar product in G) for x(rθ) for all x ∈ G and
r ∈ R. If R is unitary, then R-group G is called unitary. Thus an R-group is an
additive group G satisfying (i) x(a + b) = xa + xb, (ii) x(ab) = (xa)b and (iii)
x1 = x ( if R has a unity 1 ), for all x ∈ G and a, b ∈ R.

Naturally, we can define a new concept of R-group: An R-group G is called
distributive, in case (x+ y)a = xa+ ya, for all x, y ∈ G and for each a ∈ R. For
example, every distributive near-ring R is a distributive R-group.

Evidently, every near-ringR can be given the structure of anR-group (unitary,
if R is unitary) by right multiplication in R. Moreover, every group G has
a natural M(G)-group structure, from the representation of M(G) on G by
applying the f ∈ M(G) to the x ∈ G as a scalar multiplication xf .

A representation θ of R on G is called faithful if Kerθ = {0}, that is, θ is a
monomorphism, equivalently, xr = 0 implies r = 0, for all x ∈ G and r ∈ R. In
this case, we say that G is called a faithful R-group.

For an R-group G, a subgroup T of G such that TR ⊂ T is called an R-
subgroup of G, a normal subgroup N of G such that NR ⊂ N is called a normal
R-subgroup of G, and an R-ideal of G is a normal subgroup N of G such that
(N + x)a− xa ⊂ N for all x ∈ G, a ∈ R. Also, note that the R-ideals of RR are
equivalent to the right ideals of R.

Let R be a near-ring and let G be an R-group. If there exists x in G such
that G = xR, that is, G = {xr | r ∈ R}, then G is called a monogenic R-group
and the element x is called a generator of G ([5]).

Also, for R-groups G and T , a mapping f from G to T is called an R-group
homomorphism [5] if (i) (x + y)f = xf + yf, (ii) (xa)f = xfa, for all x, y ∈
G and a ∈ R. Analogously, we can consider monomorphism, epimorphism,
isomorphism, endomorphism and automorphism for R-groups.

Now, we consider that the substructures of R and G, also quotients of sub-
structure relations between them.

Let G be an R-group and K, K1 and K2 be nonempty subsets of G. Define

(K1 : K2) := {a ∈ R|K1a ⊂ K2}.
We abbreviate that for x ∈ G

({x} : K) =: (x : K).

Similarly, (K : x) is defined. (K : o) is called the annihilator of K in R, denoted
it by Ann(K). We say that G is a faithful R-group or that R acts faithfully on
G if Ann(G) = {0}, that is, (G : o) = {0}.
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Lemma 2.1 ([3]). Let G be an R-group and K1 and K2 subsets of G. Then we
have the following conditions:

(1) If K2 is a (normal) subgroup of G, then (K1 : K2) is a (normal) subgroup
of R.

(2) If K2 is an R-subgroup of G, then (K1 : K2) is a right R-subgroup of R.
(3) If K2 is an R-ideal of G and K1 is an R-subgroup of G, then (K1 : K2)

is a two-sided ideal of R.

Corollary 2.2 ([3]). Let R be a near-ring and G an R-group.

(1) For any x ∈ G, (x : o) is a right ideal of R.
(2) For any R-subgroup K of G, (K : o) is a two-sided ideal of R.
(3) For any subset K of G, (K : o) =

⋂
x∈K(x : o).

(4) If G is faithful, then
⋂

x∈G(x : o) = {0}.
From now on, we will consider the isomorphism theorem in near-rings (or, R-

groups) which is only mentioned already in [5], we can reprove it more concretely
as following.

Let f : R −→ S be a near-ring homomorphism. Then certainly, f : R+ −→
S+ be a group homomorphism, where R+ = (R,+), and so as group

R+/Kerf ∼= R+f.

Putting K := Kerf , (K,+) is a normal subgroup of (R,+) and R/K = {a +
K|a ∈ R}. The addition in R defines an addition in R/K by

(a+K) + (b+K) = (a+ b) +K.

This addition is well defined in group theory.
Would it make

(a+K)(b+K) = ab+K

a well defined binary operation? It is affirmative in the following statement:

Lemma 2.3 (Isomorphism Theorem). Let K be the kernel of a near-ring ho-
momorphism f : R −→ S. Then (R/K,+, ·) ∼= Imf.

Proof. If (a+K)(b+K) = ab+K is a well defined binary operation, then easily,
(R/K,+, ·) is a near-ring.

Suppose that a+K = a′ +K and b+K = b′ +K. Then there exist x, y ∈ K
such that a = a′ + x and b = b′ + y. We need to show that ab +K = a′b′ +K
or equivalently, ab− a′b′ ∈ K.

Now, ab = (a′ + x)(b′ + y) = (a′ + x)b′ + (a′ + x)y. Since (a′ + x)y is in K,
putting (a′+x)y = k in K, ab = (a′+x)b′+k and ab−a′b′ = (a′+x)b′+k−a′b′ =
(a′+x)b′−a′b′+k′ ∈ K, for some k′ ∈ K. Hence, multiplication is well defined.

As groups, (R/K,+) ∼= (Rf,+), where a mapping F : R/K −→ Rf which is
defined by (a+K)F = af is the group isomorphism. Now, we have

((a+K)(b+K))F = (ab+K)F = abf = afbf = (a+K)F (b+K)F.

Consequently, F is a near-ring isomorphism. ¤
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We can obtain the following fundamental theorem in near-ring homomor-
phism:

Theorem 2.4. Let f : R −→ S be a near-ring epimorphism with the kernel K
of f , and let π : R −→ R/K defined by aπ = a+K be the natural epimorphism.
Then the isomorphism F : R/K −→ S which is defined by (a + K)F = af is
unique such that πF = f.

Proof. By Lemma 2.3, there exists a near-ring isomorphism f : R −→ S.
Next, to show that πF = f , let a ∈ R, and we get a(πF ) = (aπ)F =

(a+K)F = af . Hence, πF = f .
Finally, to show that the ”uniqueness”, if F ′ : R/K −→ S is a near-ring

isomorphism such that πF ′ = f, then for all a+K ∈ R/K, we have

(a+K)F ′ = (aπ)F ′ = a(πF ′) = af = (aπ)F = (a+K)F.

¤

Analogously, we can prove the isomorphism theorem and fundamental theo-
rem for R-groups.

Theorem 2.5. If R is a near-ring and G an R-group, then R/Ann(G) is iso-
morphic to a subnear-ring of M(G).

Proof. Let a ∈ R. We define τa : G −→ G by xτa = xa for each x ∈ G. Then
τa is in M(G). Consider the mapping φ : R −→ M(G) defined by aφ = τa.
Then obviously, we see that (a+ b)φ = aφ+ bφ and (ab)φ = aφbφ, that is, φ is
a near-ring homomorphism from R to M(G).

Next, we must show that Kerφ = Ann(G). Indeed, if a ∈ Kerφ, then τa = 0,
which implies that Ga = Gτa = 0, that is, a ∈ Ann(G). On the other hand,
if a ∈ Ann(G), then by the definition of Ann(G), Ga = 0 hence 0 = τa = aφ,
this implies that a ∈ Kerφ. Therefore from the isomorphism theorem on R-
groups, the image of R is a near-ring isomorphic to R/Ann(G). Consequently,
R/Ann(G) is isomorphic to a subnear-ring of M(G). ¤

Thus we can obtain the following important statement as in ring theory.

Corollary 2.6. If G is a faithful R-group, then R is embedded in M(G).

Theorem 2.7. Let R be a near-ring and G an R-group. Then we have the
following statements:

(1) Ann(G) is a two-sided ideal of R. Moreover G is a faithful R/Ann(G)-
group.

(2) For any x ∈ G, we get xR ∼= R/(x : o) as R-groups.

Proof. (1) By Corollary 2.2 and Lemma 2.1, Ann(G) is a two-sided ideal of R.
We now make G an R/Ann(G)-group by defining, for r ∈ R, r + Ann(G) ∈
R/Ann(G), the action x(r+Ann(G)) = xr. If r+Ann(G) = r′ +Ann(G), then
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−r′ + r ∈ Ann(G) hence x(−r′ + r) = 0 for all x in G, that is to say, xr = xr′.
This tells us that

x(r +Ann(G)) = xr = xr′ = x(r′ +Ann(G));

thus the action of R/Ann(G) on G has been shown to be well defined. The
verification of the structure of an R/Ann(G)-group is a routine triviality. Finally,
to see that G is a faithful R/Ann(G)-group, we note that if x(r +Ann(G)) = 0
for all x ∈ G, then by the definition of R/Ann(G)-group structure, we have
xr = 0. Hence r ∈ Ann(G). This says that only the zero element of R/Ann(G)
annihilates all of G. Thus G is a faithful R/Ann(G)-group.

(2) For any x ∈ G, clearly xR is an R-subgroup of G. The map φ : R −→
xR defined by φ(r) = xr is an R-epimorphism, so that from the isomorphism
theorem in near-ring theory and the kernel of φ is (x : o), we deduce that

xR ∼= R/(x : o)

as R-groups. ¤
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