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ON CONVERGENCES FOR ARRAYS OF ROWWISE

PAIRWISE NEGATIVELY QUADRANT DEPENDENT

RANDOM VARIABLES†

DAE-HEE RYU∗ AND SANG-RYUL RYU

Abstract. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise and pairwise
negatively quadrant dependent random variables with mean zero, {ani, i ≥
1, n ≥ 1} an array of weights and {bn, n ≥ 1} an increasing sequence
of positive integers. In this paper we consider some results concerning

complete convergence of
∑bn

i=1 aniXni.
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1. Introduction

A sequence {Xn, n ≥ 1} of random variables is said to converge completely
to a constant c if

∑∞
n=1 P{|Xn − c| ≥ ε} < ∞ for all ε > 0. This concept

of complete convergence was introduced by Hsu and Robbins(1947). Moreover,
they proved that the sequence of arithmetic means of independent and identically
distributed(i.i.d.) random variables converges completely to the expected value if
the variance of summands is finite. This result has been generalized and extended
in several directions(see Baum and Katz(1965), Chow(1973), Gut(1992, 1993), Li
et al.(1992, 1995), Liang and Su(1999), Liang(2000), Hu et al.(2001), and Ahmed
et al.(2002)). In particular, Kuczmaszewska(2009) obtained the following result:

Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise negatively associated random
variables and {ani, i ≥ 1, n ≥ 1} be an array of real numbers. Let {bn, n ≥ 1}
be an increasing sequence of positive integers and {cn, n ≥ 1} be a sequence
positive numbers. If for some q > 2, 0 < t < 2 and any ε > 0 the following
conditions are fulfilled
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(a)
∑∞

n=1 cn
∑bn

i=1 P{|aniXni| ≥ εb
1
t
n} < ∞,

(b)
∑∞

n=1 cnb
− q

t
n

∑bn
i=1 |ani|qE|Xni|qI[|aniXni| < εb

1
t
n ] < ∞,

(c)
∑∞

n=1 cnb
− q

t
n (

∑bn
i=1 a

2
niEX2

niI[|aniXni| < εb
1
t
n ])

q
2 < ∞,

then
∑∞

n=1 cnP [max1≤i≤bn |∑i
j=1(anjXnj − anjEXnjI[|anjXnj | < εb

1
t
n ])|

≥ εb
1
t
n ] < ∞.

Next, we turn our attention to dependence structures for random variables.
Lehmann(1966) introduced a simple and natural definition of bivariate depen-
dence: A sequence {Xn, n ≥ 1} of random variables is said to be pairwise neg-
atively quadrant dependent if for any ri, rj and i 6= j, P (Xi > ri, Xj > rj) ≤
P (Xi > ri)P (Xj > rj).

Negative quadrant dependence is shown to be weaker than negative associ-
ation which is a key concept of negative dependence studied by Joag-Dev and
Proschan(1983). Matula(1992) proved a strong law of large numbers, Wu(2006)
showed the maximal inequality and Meng and Lin(2009) obtained the weak law
of large numbers for negatively quadrant dependent random variables. But there
are few literature on the complete convergence for negatively quadrant depen-
dent random variables.

Inspired by Kuczmaszewska(2009) we investigate some results concerning

complete convergence of weighted sums
∑bn

i=1 aniXni, where {ani, i ≥ 1, n ≥ 1}
is an array of constants(weights), {Xni, i ≥ 1, n ≥ 1} is an array of rowwise
pairwise negatively quadrant dependent random variables and {bn, n ≥ 1} is an
increasing sequence of positive integers.

2. Preliminaries

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of pairwise negatively quadrant
dependent random variables and {fn, n ≥ 1} be a sequence of nondecreasing
functions. Then {fn(Xn), n ≥ 1} is still a sequence of pairwise negatively quad-
rant dependent random variables.

Definition 2.2. A real valued function h(x), positive and measurable on [a,∞)
for some a > 0, is said to be slowly varying if

lim
x→∞

h(λx)

h(x)
= 1 for each λ > 0.

Lemma 2.3 (Bai and Su(1985)). If h(x) > 0 is slowly varying function as x →
∞, then

(a) limx→∞
h(x+u)
h(x) = 1 for each u > 0,

(b) limk→∞ sup2k≤x<2k+1
h(x)
h(2k)

= 1,

(c) c12
krh(ε2k) ≤ ∑k

j=1 2
jrh(ε2j) ≤ c22

krh(ε2k) for every r > 0, ε > 0,
positive integer k and some positive constants c1 and c2,
(d) c32

krh(ε2k) ≤ ∑∞
j=k 2

jrh(ε2j) ≤ c42
krh(ε2k) for every r < 0, ε > 0,
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positive integer k and some positive constants c3 and c4.

Definition 2.4. An array {Xnj , j ≥, n ≥ 1} of random variables is said to
be stochastically dominated by a random variable X if there exists a positive
constant D such that P{|Xnj | > x} ≤ DP{D|X| > x} for all x ≥ 0, j ≥ 1 and
n ≥ 1.

3. Main results

Theorem 3.1. Let {Xnj , j ≥ 1, n ≥ 1} be an array of rowwise pairwise neg-
atively quadrant dependent random variables with mean zero and {anj , j ≥
1, n ≥ 1} be an array of positive numbers. Let {bn, n ≥ 1} be a nondecreasing
sequence of positive integers and {cn, n ≥ 1} be a sequence of positive numbers
with

∑∞
n=1 cn = ∞. Assume that for some 0 < t < 2 and any ε > 0

(3.1)

∞∑
n=1

cn

bn∑

j=1

P{|anjXnj | ≥ εb
1
t
n} < ∞

and

(3.2)

∞∑
n=1

cnb
− 2

t
n

bn∑

j=1

a2njE(Xnj)
2I[|anjXnj | < εb

1
t
n ] < ∞.

Then

(3.3)

∞∑
n=1

cnP{|
bn∑

j=1

(anjXnj − anjEXnjI[|anjXnj | < εb
1
t
n ])| ≥ εb

1
t
n} < ∞.

Proof. Let

X̃nj = XnjI[|anjXnj | < εb
1
t
n ] +

εb
1
t
n

anj
I[anjXnj ≥ εb

1
t
n ]− εb

1
t
n

anj
I[anjXnj < −εb

1
t
n ],

Ynj = X̃nj − EX̃nj .

Since anjEXnjI[|anjXnj | ≥ εb
1
t
n ] = −anjEXnjI[|anjXnj | < εb

1
t
n ], it follows

from (3.1) that, for sufficient large n

P{|
bn∑

j=1

(anjXnj − anjEXnjI[|anjXnj | < εb
1
t
n ])| ≥ εb

1
t
n}

(3.4) ≤
bn∑

j=1

P{|anjXnj | ≥ εb
1
t
n}+ ε−2b

− 2
t

n E(

bn∑

j=1

Ynj)
2.

We estimate

(3.5) EY 2
nj ≤ EX2

njI[|anjXnj | < εb
1
t
n ] +

ε2b
2
t
n

a2nj
P{|anjXnj | ≥ εb

1
t
n}.
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Thus by (3.4) and (3.5) we get

(3.6) P{|
bn∑

j=1

anjXnj − anjEXnjI[|anjXnj | < εb
1
t
n ]| ≥ εb

1
t
n}

≤ 2

bn∑

j=1

P{|anjXnj | ≥ εb
1
t
n}

+ε−2b
− 2

t
n {

bn∑

j=1

a2njEX2
njI[|anjXnj | < εb

1
t
n ]} = I + II,

which yields (3.3) since
∑∞

n=1 cnI < ∞ by (3.1) and
∑∞

n=1 cnII < ∞ by (3.2).
¤

Theorem 3.2. Let {Xnj , j ≥ 1, n ≥ 1} be an array of rowwise pairwise nega-
tively quadrant dependent random variables with EXnj = 0 for all j ≥ 1, n ≥ 1,
{anj , j ≥ 1, n ≥ 1} be an array of positive real numbers and {bn, n ≥ 1} be
an increasing sequence of positive integers. Assume that for some sequence
{λn, n ≥ 1} with 0 < λn ≤ 1 we have E|Xnj |1+λn < ∞ for 1 ≤ j ≤ bn, n ≥ 1. If
for some sequence {cn, n ≥ 1} of positive real numbers with

∑∞
n=1 cn = ∞ and

0 < t < 2

(3.7)

∞∑
n=1

cn(b
1
t
n )

−1−λn

bn∑

j=1

|anj |1+λnE|Xnj |1+λn < ∞,

then for any ε > 0

(3.8)

∞∑
n=1

cnP{|
bn∑

j=1

anjXnj | ≥ εb
1
t
n} < ∞.

Proof. By assumption
∑∞

n=1 cn = ∞ and (3.7) we have

(3.9) (b
1
t
n )

−1−λn

bn∑

j=1

|anj |1+λnE|Xnj |1+λn < 1.

By the assumption (3.7) we estimate

∞∑
n=1

cn

bn∑

j=1

P{|anjXnj | ≥ εb
1
t
n}

<

∞∑
n=1

cn(εb
1
t
n )

−1−λn

bn∑

j=1

|anj |1+λnE|Xnj |1+λn < ∞,
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and
∞∑

n=1

cnb
− 2

t
n

bn∑

j=1

a2njE|Xni|2I[|anjXnj | < εb
1
t
n ]

≤
∞∑

n=1

cn(b
1
t
n )

−1−λn

bn∑

j=1

|anj |1+λnE|Xnj |1+λn < ∞,

from which (3.1) and (3.2) of Theorem 3.1 are fulfilled.
To complete the proof, it remains to show that

I0 = b
− 1

t
n |

bn∑

j=1

anjEXnjI[|anjXnj | < εb
1
t
n ]| → 0 as n → ∞.

We estimate

I0 ≤ b
− 1

t
n

bn∑

j=1

|anjEXnjI[|anjXnj | ≥ εb
1
t
n ]|

≤ b
− 1

t
n

bn∑

j=1

|anj |E|Xnj |I[|anjXnj | ≥ εb
1
t
n ]

≤ b
− 1

t
n

bn∑

j=1

|anj |1+λnE|Xnj |1+λn(εb
1
t
n )

−λn

≤ ε−λn(b
1
t
n )

−1−λn

bn∑

j=1

|anj |1+λnE|Xnj |1+λn → 0, as n → ∞

by assumption (3.7). ¤

Lemma 3.3. Let {Xnj , j ≥ 1, n ≥ 1} be an array of rowwise pairwise negatively
quadrant dependent dependent random variables and {anj , j ≥ 1, n ≥ 1} be an
array of positive numbers. Let h(x) > 0 be a slowly varying function as x →
∞, α > 1

2 and αr ≥ 1. If for 0 < t < 2 the following conditions hold for any
ε > 0

(3.10)

∞∑
n=1

nαr−2h(n)

n∑

j=1

P{|anjXnj | ≥ εn
1
t } < ∞,

(3.11)

∞∑
n=1

nαr−2− 2
t h(n)

n∑

j=1

a2njEX2
njI[|anjXnj | < εn

1
t ] < ∞,

then

(3.12)

∞∑
n=1

nαr−2h(n)P{|
bn∑

j=1

anjXnj − anjEXnjI[|anjXnj | < εn
1
t ]| ≥ εn

1
t }.
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Proof. Let cn = nαr−2h(n) and bn = n. Then by Theorem 3.1 (3.12) follows. ¤

Theorem 3.4. Let {Xnj , j ≥ 1, n ≥ 1} be an array of rowwise and identi-
cally distributed pairwise negatively quadrant dependent random variables with
EX11 = 0 and let h(x) > 0 be a slowly varying function as x → ∞. If for α > 1

2 ,
αr ≥ 1 and 0 < t < 2, E|X11|αrth(|X11|t) < ∞, then

(3.13)

∞∑
n=1

nαr−2h(n)P{|
n∑

j=1

Xnj | ≥ εn
1
t } < ∞.

Proof. It is enough to show that under the assumptions of Theorem 3.4, for
anj = 1, j ≥ 1, n ≥ 1 the conditions (3.10) and (3.11) of Lemma 3.3 hold.
Indeed, by Lemma 2.3 we obtain

∞∑
n=1

nαr−1h(n)P{|X11| ≥ εn
1
t }

≤ C

∞∑

k=1

(2k)αrh(2k)P{|X11| ≥ ε(2k)
1
t }

≤ C

∞∑
m=1

P{ε(2m)
1
t ≤ |X11| < ε(2m+1)

1
t }

m∑

j=1

(2j)αrh(2j)

≤ C

∞∑
m=1

(2m)αrh(2m)P{ε(2m)
1
t ≤ |X11| < ε(2m+1)

1
t }

≤ CE|X11|αrth(|X11|t) < ∞,

from which (3.10) is satisfied.
To prove that (3.11) is fulfilled, we first note that

∞∑
n=1

nαr−1− 2
t h(n)E|X11|2I[|X11| < εn

1
t ]

≤ C

∞∑

k=1

(2k)αr−
2
t h(2k)

∫ (2k)
1
t

0

x2dF (x)

≤ C

∞∑

k=1

(2k)αr−
2
t h(2k)

k∑

i=1

∫ (2i)
1
t

(2i−1)
1
t

x2dF (x)

≤ C

∞∑
m=1

(2m)αr−
2
t h(2m)

∫ (2m)
1
t

(2m−1)
1
t

x2dF (x)

= C

∞∑
m=1

(2m)αr−
2
t

∫ (2m)
1
t

(2m−1)
1
t

h(2× 2m−1)

h(|x|t) h(|x|t)x2dF (x)

= I1.
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By (b) of Lemma 2.3, we see that for sufficiently large m

I1 ≤ C

∞∑
m=1

(2m)αr−
2
t

∫ (2m)
1
t

(2m−1)
1
t

h(|x|t)x2dF (x).

Then,

∞∑
m=1

(2m)αr−
2
t

∫ (2m)
1
t

(2m−1)
1
t

h(|x|t)x2dF (x)

≤
∞∑

m=1

∫ (2m)
1
t

(2m−1)
1
t

(|x|t)αrh(|x|t)x2dF (x)

= E|X11|αrth(|X11|t) < ∞.

Hence, (3.11) is satisfied. Finally, to complete the proof it remains to show that,
for each 1 ≤ j ≤ n

n− 1
t j|EX11I[|X11| < εn

1
t ]| → 0 as n → ∞.

If αrt < 1, then

n− 1
t j|EX11I[|X11| < εn

1
t ] ≤ (ε)1−αrtn1−αrE|X11|αrt → 0 as n → ∞.

If αrt ≥ 1, then by EX11 = 0 we obtain

n− 1
t j|EX11I[|X11| < εn

1
t ] ≤ n1− 1

t | − EX11I[|X11| ≥ εn
1
t ]|

≤ (ε)1−αrtn1−αrE|X11|αrt → 0 as n → ∞.

Hence, the proof of Theorem 3.4 is complete. ¤

Theorem 3.5. Let {Xnj , j ≥ 1, n ≥ 1} be an array of rowwise pairwise quadrant
dependent random variables with mean zero and {anj , j ≥ 1, n ≥ 1} be an array
of positive numbers. Let {cn, n ≥ 1} be a sequence of positive numbers with∑∞

n=1 cn = ∞. Assume that for any ε > 0

(3.14)

∞∑
n=1

cn

bn∑

j=1

P{|anjXnj | ≥ ε} < ∞

and

(3.15)

∞∑
n=1

cn

bn∑

j=1

a2njE(Xnj)
2I[|anjXnj | < ε] < ∞.

Then

(3.16)

∞∑
n=1

cnP{|
bn∑

j=1

(anjXnj − anjEXnjI[|anjXnj | < ε])| ≥ ε} < ∞.

Proof. In Theorem 3.1 take bn = 1. Then the result follows. ¤
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Corollary 3.6. Let {Xnj , j ≥ 1, n ≥ 1} be an array of rowwise pairwise
quadrant dependent random variables with mean zeros. Let the random vari-
ables in each row be stochastically domianted by a random variable X with
EX2 < ∞ and let {anj , j ≥ 1, n ≥ 1} be an array of positive numbers such that
limn→∞ anj = 0 for each j ≥ 1. If for some δ > 1

(3.17) sup
j≥1

|anj | = O(n−δ) and

∞∑

j=1

|anj | ≤ C for all n ≥ 1,

where C is a positive constant, then for any ε > 0
∞∑

n=1

P{|
n∑

j=1

anjXnj | ≥ ε} < ∞.

Proof. Let cn = 1, bn = n for n ≥ 1 in Theorem 3.5. Then, by Definition 2.4
and (3.17) we have

(3.18)

∞∑
n=1

n∑

j=1

P{|anjXnj | ≥ ε} ≤
∞∑

n=1

n∑

j=1

P{|anjX| ≥ ε

D
}

≤
∞∑

n=1

n∑

j=1

P{|X| ≥ Cεnδ} ≤ C

∞∑
n=1

n1−2δEX2 < ∞

and

(3.19)

∞∑
n=1

n∑

j=1

a2njEX2
njI[|anjXnj | < ε] ≤

∞∑
n=1

n∑

j=1

a2njEX2I[|anjX| < ε]

≤ C

∞∑
n=1

sup
j≥1

|anj |EX2
n∑

j=1

|anj | ≤ C

∞∑
n=1

n−δEX2 < ∞ for δ > 1.

Hence, (3.14) and (3.15) in Theorem 3.5 are fulfilled. To complete the proof, we
need to prove

n∑

j=1

anjEXnjI[|anjXnj | < ε] → 0 as n → ∞.

We have for each 1 ≤ j ≤ n

|
n∑

j=1

anjEXnjI[|anjXnj | < ε]| ≤
n∑

j=1

|anj ||EXnjI[|anjXnj | < ε]|

≤
n∑

j=1

|anj ||EXnjI[|anjXnj | ≥ ε]| ≤ Cn−δEX2 → 0 as n → ∞.

Hence the proof is complete by Theorem 3.5. ¤

Corollary 3.7. Let {Xnj , j ≥ 1, n ≥ 1} be an array of rowwise pairwise nega-
tively quadrant dependent random variables with EXnj = 0 for all j ≥ 1, n ≥ 1,
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{anj , j ≥ 1, n ≥ 1} be an array of positive real numbers and {bn, n ≥ 1} be
an increasing sequence of positive integers. Assume that for some sequence
{λn, n ≥ 1} of real numbers with 0 < λn ≤ 1 we have E|Xnj |1+λn < ∞ for
1 ≤ j ≤ bn, n ≥ 1. If for some sequence {cn, n ≥ 1} of positive real numbers
with

∑∞
n=1 cn = ∞

(3.20)

∞∑
n=1

cn

bn∑

j=1

|anj |1+λnE|Xnj |1+λn < ∞,

then

(3.21)

∞∑
n=1

cnP{|
bn∑

j=1

anjXnj | > ε} < ∞.

Proof. By assumption
∑∞

n=1 cn = ∞ we have

(3.22)

bn∑

j=1

|anj |1+λnE|Xnj |1+λn < 1.

By the condition (3.20) we estimate

∞∑
n=1

cn

bn∑

j=1

P{|anjXnj | ≥ ε} ≤
∞∑

n=1

cn

bn∑

j=1

|anj |1+λnE|Xnj |1+λn < ∞

and
∞∑

n=1

cn

bn∑

j=1

a2njEX2
niI[|anjXnj | < ε]

≤
∞∑

n=1

cn

bn∑

j=1

|anj |1+λnE|Xnj |1+λnI[|anjXnj | ≤ ε] < ∞.

Hence (3.14) and (3.15) in Theorem 3.5 are fulfilled. Finally we estimate

|
bn∑

j=1

anjEXnjI[|anjXnj | < ε log2 bn]|

≤
bn∑

j=1

|anj |E|Xni|I[|anjXnj | ≥ ε log2 bn]

≤
bn∑

j=1

|anj |1+λnE|Xni|1+λn(ε)λn ≤
bn∑

j=1

|anj |1+λnE|Xni|1+λn

≤
bn∑

j=1

|anj |1+λnE|Xni|1+λn < ∞ as n → ∞

by (3.22). Hence, the proof is complete. ¤
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