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1. Introduction

In this paper we establish some fixed point results in a fuzzy metric space
by applications of certain fixed point theorems in metric spaces. Also we prove
some fixed point results in metric spaces. Fuzzy metric space was first intro-
duced by Kramosil and Michalek [8]. Subsequently, George and Veeramani had
given a modified definition of fuzzy metric spaces[1]. Fixed point results in such
spaces have been established in a large number of works. Some of these works
are noted in [2], [10], [11], [14],[15] and [16].

Definition 1.1 ([1]). A binary operation ∗ : [0, 1]×[0, 1] −→ [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a∗b = ab and a∗b = min(a, b).

Definition 1.2 ([1]). A 3-tuple (X,M, ∗) is called a fuzzy metric space (in the
sense of George and Veeramani) if X is an arbitrary (non-empty) set, ∗ is a
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continuous t-norm, and M is a fuzzy set on X2× (0,∞), satisfying the following
conditions for each x, y, z ∈ X and t, s > 0:

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s),
(5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Here we have considered another definition of fuzzy metric space (non-Archimedean).
We describe the space along with some associated concepts in the following.

Definition 1.3 ([12]). A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t−norm and M is a fuzzy set on
X2 × (0,∞) satisfying the following conditions for each x, y, z ∈ X and t, s > 0:

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, z, t) ∗M(z, y, s) ≤ M(x, y, t ∨ s), where (t ∨ s) = max{s, t},
(5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

All fuzzy metric in this paper are assumed to be non-Archimedean. The
following properties of M noted in the theorem below are easy consequences of
the definition.

Theorem 1.1. (i) M(x, y, t) is nondecreasing with respect to t for each x, y ∈
X.

(ii) M(x, y, t) ≥ M(x, z, t) ∗M(z, y, t) for all x, y, z ∈ X and t > 0.

Example 1.2. (1) Let a ∗ b = ab for all a, b ∈ [0, 1] and M be the fuzzy set on
X2× :]0,+∞[ defined by

M(x, y, t) = exp−
d(x, y)

t
,

where d is an ordinary metric on set X. Then (X,M, ∗) is a fuzzy metric space.

(2) Let a ∗ b = ab for all a, b ∈ [0, 1] and M be the fuzzy set on R+ × R+ ×
(0,+∞) defined by

M(x, y, t) =
min{x, y}
max{x, y} ,

for all x, y ∈ R+. Then (X,M, ∗) is a fuzzy metric space.

Example 1.3. If M be the fuzzy set on X2 × (0,+∞) defined by

M(x, y, t) =
t

t+ d(x, y)
,
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where d is any metric on X, then it is easy to see that M satisfies all the conditions
of definition 1.3, but not all of the conditions of definition 1.2 are satisfied for
each x, y, z ∈ X and t > 0.

Let (X,M, ∗) be a fuzzy metric space . For t > 0, the open ball B(x, r, t)
with center x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.
Let (X,M, ∗) be a fuzzy metric space. Let τ be the set of all A ⊂ X with

x ∈ A if and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A.
Then τ is a topology on X (induced by the fuzzy metric M). A sequence {xn}
in X converges to x if and only if M(xn, x, t) → 1 as n → ∞, for each t > 0.
It is called a Cauchy sequence if for each 0 < ε < 1 and t > 0, there exits
n0 ∈ N such that M(xn, xm, t) > 1 − ε for each n,m ≥ n0. This definition of
Cauchy sequence is identical with that given by George and Veeramani[1]. The
fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy sequence is
convergent.

Let Φ denote a family of mappings such that for each φ ∈ Φ,

(1) φ : (0, 1] −→ [0,∞),
(2) φ is continuous and decreasing,
(3) φ(x) = 0 ⇐⇒ x = 1 and φ(x.y) ≤ φ(x) + φ(y), for every x, y ∈ (0, 1].

2. Main results

Lemma 2.1. Let (X,M, ∗) be a fuzzy metric space with a ∗ b ≥ ab for all
a, b ∈ [0, 1] and M(x, y, .) having discontinuity at 0, for all x, y ∈ X. If we

define d : X2 −→ [0,∞) by d(x, y) = supα
∫ 1

α
φ(M(x, y, t))dt, then d is a metric

on X for fixed 0 < α < 1.

Proof. It is clear from the definition that d(x, y) is well defined for each x, y ∈ X.
(i) d(x, y) ≥ 0 for all x, y ∈ X is trivial.

(ii) d(x, y) = 0 ⇐⇒ φ(M(x, y, t)) = 0 for all t > 0

⇐⇒ M(x, y, t) = 1 for all t > 0 ⇐⇒ x = y.

(iii) d(x, y) = supα

∫ 1

α

φ(M(x, y, t))dt

= supα

∫ 1

α

φ(M(y, x, t))dt = d(y, x).

(iv)Since M(x, y, t) ≥ M(x, z, t) ∗M(z, y, t)

≥ M(x, z, t).M(z, y, t).
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and also since φ is decreasing, it follows that,

d(x, y) = supα

∫ 1

α

φ(M(x, y, t))dt

≤ supα

∫ 1

α

φ(M(x, z, t).M(z, y, t))dt

≤ supα

∫ 1

α

φ(M(x, z, t))dt+ supα

∫ 1

α

φ(M(z, y, t))dt

= d(x, z) + d(z, y)

This proves that d is a metric on X. ¤
Theorem 2.2. Let (X,M, ∗) be a fuzzy metric space with a ∗ b ≥ ab for all
a, b ∈ [0, 1] and M(x, y, .) having discontinuity at 0, for all x, y ∈ X. If we

define d : X2 −→ [0,∞) by d(x, y) = supα
∫ 1

α
logM(x,y,t)

a dt, then d is a metric
on X for 0 < a < 1.

Proof. The proof follows from the above lemma 1.7 by choosing φ(x) = logxa. ¤
Let Ψ denote a family of mappings such that for each ψ ∈ Ψ,

ψ : [0,∞) −→ [0,∞),

(1) ψ is continuous ,
(2) ψ(t) is increasing and
(3) ψ(0) = 0 and ψ(t) < t for every t > 0.

Lemma 2.3. Let ψ ∈ Ψ, then corresponding to this ψ, there exists a
γ : (0, 1] −→ (0, 1] such that γ is a continuous, increasing function such that
γ(t) > t for 0 < t < 1 and γ(1) = 1.

Proof. Let λ : [0,∞) −→ (0, 1] be such that λ(t) = aψ(t) for every t ∈ [0,∞)
and 0 < a < 1. It is easy to see that λ is a continuous, decreasing function and
λ(0) = 1. Now, we define η : (0, 1] −→ [0,∞) such that η(t) = logta for every
t ∈ (0, 1] and 0 < a < 1. We define γ : (0, 1] −→ (0, 1] such that

γ(t) = λ(η(t)) = λ(logta) = aψ(logt
a)

for every t ∈ (0, 1] and 0 < a < 1. Then γ is a continuous, increasing function
and γ(t) > t for 0 < t < 1 and γ(1) = 1 . ¤
Example 2.4. Let ψ : [0,∞) −→ [0,∞) be defined as ψ(x) = kx where 0 <
k < 1. Now corresponding to this function ψ, we define γ : (0, 1] −→ (0, 1] by
γ(t) = tk where 0 < t ≤ 1.

Lemma 2.5. Let (X,M, ∗) be a fuzzy metric space with a ∗ b ≥ ab for all
a, b ∈ [0, 1] and M(x, y, .) having discontinuity at 0, for all x, y ∈ X. We define

d : X2 −→ [0,∞) by d(x, y) = supα
∫ 1

α
cot(π2M(x, y, t))dt, then d is a metric on

X.

Proof.
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(i) d(x, y) ≥ 0 is trivial.
(ii)

d(x, y) = 0 ⇐⇒ cot(
π

2
M(x, y, t)) = 0 for all t > 0

⇐⇒ M(y, x, t) = 1 for all t > 0 ⇐⇒ x = y.

(iii)

d(x, y) = supα

∫ 1

α

cot(
π

2
M(x, y, t))dt

= supα

∫ 1

α

cot(
π

2
M(x, y, t))dt = d(y, x).

(iv)

Since M(x, y, t) ≥ M(x, z, t) ∗M(z, y, t)

≥ min{M(x, z, t),M(z, y, t)}.
and also since 0 < π

2M(x, y, t) ≤ π
2 it follows that,

d(x, y) = supα

∫ 1

α

cot(
π

2
M(x, y, t))dt

≤ supα

∫ 1

α

cot[
π

2
(M(x, z, t) ∗M(z, y, t))]dt

= supα

∫ 1

α

cot(
π

2
min{M(x, z, t),M(z, y, t)})dt

≤ supα

∫ 1

α

cot(
π

2
M(x, z, t))dt

+supα

∫ 1

α

cot(
π

2
M(z, y, t))dt

= d(x, z) + d(z, y),

that is d is a metric on X. ¤

Remark 2.1. Let a, b ∈ (0, 1], then it is a standard result that

Arccot(min{a, b}) ≤ Arccot(a) + Arccot(b)− π

4

Lemma 2.6. Let a ∗ b = min{a, b} for all a, b ∈ [0, 1] and (X,M, ∗) be a fuzzy
metric space. We define d : X2 −→ [0,∞) by

d(x, y) = supα
∫ 1

α
( 4πArccot(M(x, y, t)) − 1)dt, then d is a metric on X. Also

0 ≤ d(x, y) < 1.

Proof. (i) 0 ≤ d(x, y) < 1 is trivial.
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(ii)

d(x, y) = 0 ⇐⇒ 4

π
Arccot(M(x, y, t))− 1 = 0 for all t > 0

⇐⇒ Arccot(M(x, y, t)) =
π

4
for all t > 0.

⇐⇒ M(x, y, t) = 1 for all t > 0 ⇐⇒ x = y.

(iii) d(x, y) = d(y, x) is trivial.

(iv) Since

M(x, y, t) ≥ M(x, z, t) ∗M(z, y, t)

= min{M(x, z, t),M(z, y, t)},
it follows that,

Arccot(M(x, y, t)) ≤ Arccot[M(x, y, t) ∗M(z, y, t)]

= Arccot(min{M(x, z, t),M(z, y, t)})
≤ Arccot(M(x, z, t))

+Arccot(M(z, y, t))− π

4

Hence,

d(x, y) = sup
α

∫ 1

α

(
4

π
Arccot(M(x, y, t))− 1)dt

≤ sup
α

∫ 1

α

(
4

π
Arccot(M(x, z, t))− 1)dt

+sup
α

∫ 1

α

(
4

π
Arccot(M(z, y, t))− 1)dt

= d(x, z) + d(z, y),

that is d is a metric on X.
¤

Remark 2.2. Let (X,M, ∗) be a fuzzy metric space with a ∗ b ≥ ab for all
a, b ∈ [0, 1] and M(x, y, .) having discontinuity at 0, for all x, y ∈ X. If sequence
{xn} in X converges to x, that is, for every 0 < ε < 1 there exist n0 ∈ N such
that M(xn, x, t) > 1− ε for ∀n ≥ n0 and each t > 0, then d(xn, x) −→ 0 where

d(x, y) = supα
∫ 1

α
logM(x,y,t)

a dt. Also it is a Cauchy sequence if for each 0 < ε < 1
and t > 0, there exits n0 ∈ N such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.

It follows that d(xn, xm) = supα
∫ 1

α
logM(xn,xm,t)

a dt < supα
∫ 1

α
log1−ε

a dt < η, for

every η = (1− α) log1−ε
a . Thus {xn} in (X, d) is a Cauchy sequence.

In 1976, Jungck[4] introduced the notion of commuting mappings to find
common fixed point results in metric spaces. Later on, in[5] Jungck proposed
the notion of compatible mappings which is a generalization of the concept
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of commuting mapping. Some common fixed point theorems for compatible
mappings and their generalizations are addressed in [6], [7] [9] and [17]. In this
paper we consider weak compatible mappings.

Definition 2.1 ([13]). Let A and S be mappings from a metric space X into
itself. Then the mappings are said to be weak compatible if they commute at a
coincidence point, that is, Ax = Sx implies that ASx = SAx.

The Main Results

Theorem 2.7 ([3]). Let A,B, S, T, L and M be self maps on a metric space
(X, d) satisfying:

(i) L(X) ⊆ ST (X),M(X) ⊆ AB(X),
(ii) there exists k ∈ (0, 1) such that for each x, y ∈ X,

d(Lx,My) ≤ k.N(x, y), where

N(x, y) = max{d(ABx,Ly), d(STy,My), d(ABx, STy),

1

2
(d(STy, Ly) + d(ABx,My))};

(iii)one of L(X),M(X), AB(X) or ST (X) is a complete subset of X, then
(a) M and ST have a coincidence point,
(b) L and AB have a coincidence point.

Further if

(iv) AB = BA,ST = TS,LB = BL,MT = TM ,

(v) the pairs (L,AB) and (M,ST ) are weakly compatible.
Then A,B, S, T, L and M have a unique common fixed point in X.

Remark 2.3. Theorem 2.1 improves, extends and generalizes the results of
Mishra [9] and Jungck [6].

We next apply theorem 2.1 to establish the following theorem in fuzzy metric
spaces.

Theorem 2.8. Let (X,M, ∗) be a fuzzy metric space with a∗b ≥ ab for all a, b ∈
[0, 1] and M(x, y, .) having discontinuity at 0, for all x, y ∈ X. Let A,B, S, T, L
and H be self maps on X satisfying:

(i) L(X) ⊆ ST (X),H(X) ⊆ AB(X);

(ii) there exists k ∈ (0, 1) such that for each x, y ∈ X,
M(Lx,Hy, t) ≥

min

(
M(ABx,Ly, t),M(STy,Hy, t),

M(ABx, STy, t),
√
M(STy, Ly, t).M(ABx,Hy, t))

)k

(iii)one of L(X),H(X), AB(X) or ST (X) is a complete subset of X, then
(a) H and ST have a coincidence point,
(b) L and AB have a coincidence point.

Further if
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(iv) AB = BA,ST = TS,LB = BL,HT = TH,

(v) the pairs (L,AB) and (H,ST ) are weakly compatible.
Then A,B, S, T, L and H have a unique common fixed point in X.

Proof. We define d(x, y) = supα
∫ 1

α
logM(x,y,t)

a dt for every x, y ∈ X where
0 < a < 1. Then by lemma 1.8 and Remark 1.14, (X, d) is a complete met-
ric space. From the above inequality, we get,

supα
∫ 1

α
logM(Lx,Hy,t)

a dt ≤

kmax




supα
∫ 1

α
logM(ABx,Ly,t)

a dt, supα
∫ 1

α
logM(STy,Hy,t)

a dt,

supα
∫ 1

α
logM(ABx,STy,t)

a dt, 1
2 (supα

∫ 1

α
logM(STy,Ly,t)

a dt

+supα
∫ 1

α
logM(ABx,Hy,t)

a dt)


 ,

which is,

d(Lx,Hy) ≤ kmax

(
d(ABx,Ly), d(STy,Hy),
d(ABx, STy), 1

2 (d(STy, Ly) + d(ABx,Hy))

)
.

Hence all the conditions of Theorem 2.1 hold. Hence the conclusion of Theorem
2.3 follows by an application of Theorem 2.1 . ¤

Next we establish the following result in metric spaces.

Theorem 2.9. Let A,B, S and T be self maps on a metric space (X, d) satis-
fying:

(i) A(X) ⊆ T (X), B(X) ⊆ S(X) and T (X) or S(X) is a closed subset of X;
(ii) there exist positive real numbers a, b, c, e such that a+ b+ c+ 2e ≤ 1 and

for each x, y ∈ X,

d(Ax,By) ≤ ad(Sx, Ty) + bd(Sx,Ax) + cd(Ty,By) + e(d(Sx,By)

+d(Ty,Ax));

(iii) the pairs (A,S) and (B, T ) are weakly compatible.
Then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. By (i), we can choose a point x1 in
X such that y0 = Ax0 = Tx1 and y1 = Bx1 = Sx2. In general, there exists a
sequence {yn} such that, y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2,
for n = 1, 2, · · · . We claim that the sequence {yn} is a Cauchy sequence.

By (ii), we have,

d(y2n, y2n+1) = d(Ax2n, Bx2n+1)

≤ ad(Sx2n, Tx2n+1) + bd(Sx2n, Ax2n)

+cd(Tx2n+1, Bx2n+1) + e(d(Sx2n, Bx2n+1)

+d(Tx2n+1, Ax2n))

= ad(y2n−1, y2n) + bd(y2n−1, y2n) + cd(y2n, y2n+1)

+e(d(y2n−1, y2n+1)
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+d(y2n, y2n)).

If we put dn = d(yn, yn+1), then by above inequality we have,

d2n ≤ ad2n−1 + bd2n−1 + cd2n + e(d(y2n−1, y2n+1) + 0).

Hence,
d2n ≤ ad2n−1 + bd2n−1 + cd2n + ed2n−1 + ed2n.

Hence we have,

d2n ≤ a+ b+ e

1− c− e
d2n−1

= td2n−1,

where 0 < t = a+b+e
1−c−e < 1.

Similarly, it follows that

d2n+1 ≤ a+ c+ e

1− e− b
d2n

= t′d2n,

where 0 < t′ = a+c+e
1−e−b < 1. If we set k = max{t, t′} < 1, then for every n ∈ N

by above inequalities we get dn ≤ kdn−1.
Hence,

dn ≤ kdn−1 ≤ k2dn−2 ≤ · · · ≤ knd0.

That is,
d(yn, yn+1) ≤ knd(y0, y1)

If m ≥ n, then

d(yn, ym) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(ym−1, ym)

≤ knd(y0, y1) + kn+1d(y0, y1) · · ·+ km−1d(y0, y1)

≤ kn

1− k
d(y0, y1) → 0

as n → ∞. It follows that, the sequence {yn} is Cauchy sequence and by the
completeness of X, {yn} converges to y ∈ X. Then

lim
n→∞

yn = lim
n→∞

Ax2n = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = lim
n→∞

Tx2n+1 = y.

Let T (X) be a closed subset of X, then there exists v ∈ X such that Tv = y.
We now prove that Bv = y. By (ii), we get

lim
n→∞

d(Ax2n, Bv) ≤ lim
n→∞

[ad(Sx2n, T v) + bd(Ax2n, Sx2n)

+cd(Bv, Tv) + e(d(Bv, Sx2n) + d(Ax2n, T v))]

and so

d(y,Bv) ≤ ad(y, Tv) + bd(y, y) + cd(Bv, y) + e(d(Bv, y) + d(y, Tv))

< d(y,Bv).

It follows that Bv = y = Tv. Since B and T are two weakly compatible map-
pings, we have BTv = TBv and so By = Ty.
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Next, we prove that By = y. By (ii), we get

lim
n→∞

d(Ax2n, By) ≤ lim
n→∞

[ad(Sx2n, T y) + bd(Ax2n, Sx2n)

+cd(By, Ty) + e(d(By, Sx2n) + d(Ax2n, T y))].

Hence,

d(y,By) ≤ ad(y, Ty) + bd(y, y) + cd(By, Ty) + e(d(By, y) + d(y, Ty))

< d(y,By)

and so By = y.
Since B(X) ⊆ S(X), there exists w ∈ X such that Sw = y. We prove that

Aw = y. By (ii) we have

d(Aw,By) ≤ ad(Sw, Ty) + bd(Aw,Sw) + cd(By, Ty) + e(d(By, Sw)

+d(Aw, Ty))

and it follows that

d(Aw, y) ≤ ad(Sw, y) + bd(Aw,Sw) + cd(y, Ty) + e(d(y, Sw)

+d(Aw, Ty))

< d(Aw, y).

This implies that Aw = y and hence Aw = Sw = y. Since A and S are weakly
compatible, then ASw = SAw and so Ay = Sy.

Now, we prove that Ay = y. From (ii), we have

d(Ay,By) ≤ ad(Sy, Ty) + bd(Ay, Sy) + cd(By, Ty) + e(d(By, Sy)

+d(Ay, Ty))

it follows that

d(Ay, y) ≤ ad(Sy, y) + bd(Ay, Sy) + cd(By, y) + e(d(y, Sy))

+d(Ay, y))

< d(Ay, y)

and hence Ay = y and therefore Ay = Sy = By = Ty = y. That is y is a
common fixed point for A,B, T, S.

The proof is similar when S(X) is assumed to be a closed subset of X.
Now to prove the uniqueness. Assume that x is another common fixed point

of A,B, S and T . Then

d(x, y) = d(Ax,By)

≤ ad(Sx, Ty) + bd(Ax, Sx) + cd(By, Ty) + e(d(Sx,By)

+d(Ax, Ty))

and so

d(x, y) ≤ ad(x, y) + bd(x, x) + cd(y, y) + e(d(x, y)

+d(x, y))
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< d(x, y).

Thus it follows that x = y. ¤

We now apply the above theorem to prove the following fixed point result in
fuzzy metric spaces.

Theorem 2.10. Let (X,M, ∗) be a fuzzy metric space with a ∗ b ≥ ab for all
a, b ∈ [0, 1] and M(x, y, .) having discontinuity at 0, for all x, y ∈ X. Let A,B, S
and T be self maps on X satisfying:

(i) A(X) ⊆ T (X), B(X) ⊆ S(X) and T (X) or S(X) is a closed subset of X;

(ii) there exists positive real numbers a, b, c, e such that a+ b+ c+2e ≤ 1 and
for each x, y ∈ X,

M(Ax,By, t) ≥ [Ma(Sx, Ty, t) ∗M b(Sx,Ax, t)]
∗[M c(Ty,By, t) ∗ [Me(Sx,By, t) ∗Me(Ty,Ax, t)]]

;

(iii) the pairs (A,S) and (B, T ) are weakly compatible.
Then A,B, S and T have a unique common fixed point in X.

Proof. We define d(x, y) = supα
∫ 1

α
log

M(x,y,t)
k dt for every x, y ∈ X and 0 < k <

1. From inequality (ii) above, we get,

sup
α

∫ 1

α

log
M(Ax,By,t)
k dt

≤ sup
α

∫ 1

α

log




[Ma(Sx, Ty, t) ∗M b(Sx,Ax, t)]
∗[M c(Ty,By, t)∗
[Me(Sx,By, t) ∗Me(Ty,Ax, t)]]




k dt

≤ sup
α

∫ 1

α

log




Ma(Sx, Ty, t)M b(Sx,Ax, t)
M c(Ty,By, t)
[Me(Sx,By, t)Me(Ty,Ax, t)]




k dt

=

a supα
∫ 1

α
log

M(Sx,Ty,t)
k dt

+b supα
∫ 1

α
log

M(Sx,Ax,t)
k dt

+c supα
∫ 1

α
log

M(Ty,By,t)
k dt

+e(supα
∫ 1

α
log

M(Sx,By,t)
k dt

+supα
∫ 1

α
log

M(Ty,Ax,t)
k dt)

It follows that,

d(Ax,By) ≤ ad(Sx, Ty) + bd(Sx,Ax) + cd(Ty,By) + e(d(Sx,By) + d(Ty,Ax)) .

Hence all of conditions Theorem 2.4 hold. Thus A,B, S and T have a unique
common fixed point in X. ¤
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For any set C, ∂C denotes the boundary of C. The following theorem was
proved by Rhoades.

Theorem 2.11 ([13]). Let (X, d) be a metric space, C a nonempty closed subset
of X. Let g : C −→ X, f : C −→ C satisfy the following conditions:

(i) there exists a constant λ ∈ (0, 1) such that for each x, y ∈ C,
d(x, y) ≤ λ.N(x, y), where

N(x, y) = max{d(fx, fy), d(fx, gx), d(fy, gy), d(fx, gy), d(gy, fx)},
(ii) g(C) ∩ C ⊂ f(C),

(iii) g(∂C) ⊂ C,

(iv) f(∂C) ⊂ C,

(v) f and g are weakly compatible.
Then f and g have a unique common fixed point in C.

Theorem 2.12. Let (X,M, ∗) be a fuzzy metric space with a ∗ b ≥ ab for all
a, b ∈ [0, 1] and M(x, y, .) having discontinuity at 0, for all x, y ∈ X. Let C a
nonempty closed subset of X. Let g : C −→ X, f : C −→ C satisfy the following
conditions:

(i) there exists a constant λ ∈ (0, 1) such that , for each x, y ∈ C,

M(x, y, t) ≥ L(x, y)
λ
,where

L(x, y) = min




M(fx, fy, t),M(fx, gx, t),
M(fy, gy, t),
M(fx, gy, t),M(gy, fx, t)


 ,

(ii) g(C) ∩ C ⊂ f(C),

(iii) g(∂C) ⊂ C,

(iv) f(∂C) ⊂ C,

(v) f and g are weakly compatible.
Then f and g have a unique common fixed point in C.

Proof. We define d(x, y) = supα
∫ 1

α
logM(x,y,t)

a dt for every x, y ∈ X where 0 <
a < 1. From the inequality (i) above, we get,

sup
α

∫ 1

α

logM(x,y,t)
a dt ≤ λmax{sup

α

∫ 1

α

logM(fx,fy,t)
a dt,

sup
α

∫ 1

α

logM(fx,gx,t)
a dt,

sup
α

∫ 1

α

logM(fy,gy,t)
a dt,

sup
α

∫ 1

α

logM(fx,gy,t)
a dt,
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sup
α

∫ 1

α

logM(gy,fx,t)
a dt}

Hence we have

d(x, y) ≤ λmax{d(fx, fy), d(fx, gx), d(fy, gy), d(fx, gy), d(gy, fx)}
Hence all of conditions Theorem 2.6 hold. Thus by Theorem 2.6 maps f and

g have a unique common fixed point in C. This completes the proof of the
theorem. ¤
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