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CHARACTERIZATION THEOREMS FOR CERTAIN CLASSES

OF INFINITE GRAPHS†
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Abstract. In this paper we present a necessary and sufficient conditions
for an infinite VAP-free plane graph to be a 3LV-graph as well as an LV-
graph. We also introduce and investigate the concept of the order and the
kernel of an infinite connected graph containing no one-way infinite path.
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1. Introduction

In this paper, for the graph definitions and notations we follow [2]. A path
P in a graph G is a u, v-path if its endvertices are u and v. A one-way infinite
path consists of an infinite sequence x0, x1, x2, . . . of distinct vertices together
with the edges xixi+1 (i = 0, 1, 2, . . .). As in [6], for a subgraph H of G, we
define an equivalence relation ∼ on E(G) \ E(H) by the condition that e1 ∼ e2
if there exists a path P such that

(i) the first and last edges of P are e1 and e2, respectively, and
(ii) P and H are edge-disjoint.

A subgraph of G− E(H) induced by an equivalence class under the relation ∼
is called a bridge of H in G. If B is a bridge of H in G, then the elements of
V (H) ∩ V (B) are called the vertices of attachment of B.

Let C be a cycle in a plane graph G. We write C the subgraph of G consisting
of the vertices and the edges on C or in the interior of C. If a cycle C satisfies the
property C = C, C is called a facial cycle. An infinite locally finite plane graph
G is an LV-graph if G is 3-connected and VAP-free (=vertex-accumulation-point-
free). Then it can be easily verified that an LV-graph can contain continuum
many ends, and therefore it can have continuum many unbounded faces. In
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such a point of view, we define a 3LV-graph to be an LV-graph containing no
unbounded faces, as introduced in [3].

It is clear that an infinite connected graph must contain at least one of two
elementary configurations, namely a one-way infinite path or a vertex of infinite
degree. By forbidding one of these configurations we get two types if infinite
connected graphs which are of particular interest and may be considered as the
closest relatives of the finite graphs: the locally finite graphs and the graphs
containing no one-way infinite path.

This paper has two aims: to describe a structure of an arbitrary LV-graph
resembling that of a 3LV-graph in essential respects related to its cycle or semi-
cycle structures, and to introduce the concept of the order and the kernel of an
infinite connected graph containing no one-way infinite path (according to R.
Schmidt [8]).

As the first case in point, Thomassen’s characterization theorem [10] for an
infinite strong triangulation, an infinite VAP-free plane graph whose facial cycles
are 3-cycles, can be applied to drive similar necessary and sufficient conditions
for a VAP-free infinite plane graph to be a 3LV-graph as well as an LV-graph.
It may be noted that these contents and results are already partially presented
in [5]. As our main theme, motivated by R. Schmidt [8], we study the order
function o assigns to every infinite connected graph G containing no one-way
infinite paths an ordinal number o(G) in such a way that there is a unique
smallest finite subgraph ker(G) (=the ‘kernel’ of G) with o(Q) < o(G) for every
component Q of G − ker(G). In particular we prove that a connected graph G
contains no one-way infinite path if and only if the order function o(G) exists.
(More equivalent forms for such a graph can be found in [7] or [9].)

2. Characterization Theorems for 3LV- and LV-graphs

An infinite ‘strong’ triangulation is an infinite VAP-free plane graph whose
facial cycles are 3-cycles. C. Thomassen [10] gave a useful characterization for
an infinite plane graph to be an infinite strong triangulation. In fact, he showed
that an infinite VAP-free plane graph G is a strong triangulation if and only if
G contains a sequence of pairwise disjoint cycles (C0, C1, C2, . . .) such that Cj

is finite, triangulates the interior of Cj and contains Cj−1 (for j = 1, 2, . . .), and

furthermore every vertex of G is in the interior of some Cm. (It may be noticed
that the definition and concept for ‘week’ triangulations can be found in articles
[1] or [11].)

In order that present paper be more self-contained, we include definitions and
terminology from the paper [4]. A path P in G is a separating path if there exist
subgraphs H and H ′ of G such that G = H ∪H ′ and H ∩H ′ = P hold.

Let G be an infinite connected plane graph. A separating path in G is said
to be unbounded if each of the two endvertices of the path is incident to an
unbounded face. A finite set of unbounded separating paths Π = {P1 , . . . ,Pn}
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in G is called a semicycle if there exist connected subgraphs G0, G1, . . . , Gn of
G such that

(i) G =
⋃n

i=0 Gi, G0 ∩Gi = Pi for all i ∈ {1, . . . , n}
and Gi ∩Gj = ∅ for all i, j ∈ {1, . . . , n} with i 6= j, and

(ii) G0 is finite, but Gi (i = 1, . . . , n) are infinite.

In this case, the finite subgraph G0 of G is called the center of the semicycle Π ,
which is denoted by Cen(Π ).

A finite 2-connected plane graph H ic a circuit graph if there exists a cycle
C in a 3-connected plane graph such that H = C. Then, it can be proved
that, if H is a finite 2-connected plane graph (with outer cycle C) if and only if
H ∪ (C ×K1) is 3-connected, where C ×K1 is a wheel with the cycle C and a
vertex of K1. (More equivalent forms for such graphs can be found in [5]). Now
we are prepared to describe the characterization theorem for 3LV-graphs. For
proofs of Theorem 2.1 and Theorem 2.2, refer to [4].

Theorem 2.1 (Characterization Theorem for 3LV-graphs). Let G be an infinite
VAP-free plane graph. Then G is an 3LV-graph if and only if there exists an
infinite sequence of pairwise disjoint cycles (C0, C1, C2, . . .) such that:

(1) Cj is a circuit graph and contains Cj−1.

(2) For every vertex v ∈ V (G), there exists j ∈ {1, 2, . . .} with v ∈ V (Cj −
Cj).

Now we present a characterization theorem for an LV-graph similar to that
for 3LV-graphs. For this, we need to introduce a notation for 2-connected plane
graphs as follows:

Let H be a 2-connected finite plane graph with outer cycle C, and let Π =
{P1 , . . . ,Pr} be a set of pairwise disjoint paths on C. Then we define a graph

Ĥ (with respect to Π = {P1 , . . . ,Pr}) by adding new vertices {v1, . . . , vr} as
follows:

V (Ĥ) = V (H) ∪ {v1, . . . , vr} and

E(Ĥ) = E(H) ∪
[

r⋃

i=1

{ui1vi, ui2vi, . . . , uinivi}
]
,

where {ui1, ui2, . . . , uini} = V (Pi) for all i ∈ {1, . . . , r}.
Theorem 2.2 (Characterization Theorem for 3LV-graphs). Let G be an infinite
VAP-free plane graph. Then G is an LV-graph if and only if there exists an
infinite sequence of pairwise disjoint semicycles (Π0 ,Π1 ,Π2 , . . .) with the center
Hj = Cen(Πj ) (j = 0, 1, 2, . . .) such that:

(1) Ĥj (with respect to Πj ) is 3-connected, and Hj contains Πj−1 , for all
j ∈ {1, 2, . . .}.

(2) For every vertex v ∈ V (G), there exists j ∈ {1, 2, . . .} with v ∈ V (Hj −
Πj ).
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3. Graphs containing no one-way infinite paths

In this section we define a class of graphs associated with a given ordinal num-
ber, and then the graphs containing no one-way infinite paths is characterized
as the graphs each of which is associated with an ordinal. To do this, let µ be
an ordinal number. We inductively define graphs G associated with µ as follows:

If µ = 0, then G is associated with µ if and only if G is finite.
Now let µ > 0, and assume that for every λ < µ the graphs associated with

λ are already defined. Then a graph G is associated with µ if and only if there
exists a finite subgraph H of G such that:

(i) each component of G−H is associated with an ordinal number < µ, and
(ii) for every λ < µ, there exist infinitely many components of G −H each

of which is associated with an ordinal ≥ λ.

With this definition, we are ready to verify the following results.

Lemma 3.1. Let G be a connected graph and let H be a finite subgraph of G.
Further assume that every component Qi (i ∈ I) of G−H is associated with an
ordinal number λQi . Then G is associated with an ordinal number µ defined as
follows:

µ =





max
i∈I

λQi , if this maximum exists and is attained
only for finitely many i ∈ I;

sup
i∈I

λQi , if λQi has no maximum;

max
i∈I

λQi + 1, if this maximum exists and is attained
by infinitely many i ∈ I.

Lemma 3.1 means that µ is a limit ordinal in the second case, whereas µ is a
successor ordinal in the third case.

Lemma 3.2. If G is an infinite connected graph and H, H ′ are finite subgraphs
of G, then there exist at most finitely many components of G − H ′ which are
adjacent to H.

Using transfinite induction, we now show the opening result concerning ordi-
nal numbers for graphs.

Theorem 3.3. Let G be an infinite connected graph associated with an ordinal
number µ. Then:

(1) G cannot be associated with an ordinal number 6= µ.
(2) If H is a finite subgraph of G, then every component Q of G − H is

associated with an ordinal number ≤ µ, and at most finitely many com-
ponents of G−H are associated with µ.

Proof. We may denote Φ(µ) the statements (1) and (2) in this theorem, and
we prove the truth of both statements by transfinite induction on the ordinal
number µ.

If µ = 0, then G is finite and thus these assertions are trivial. Now let µ > 0,
and assume that the assertions (1) and (2) are verified for Φ(ν) for every ν < µ.
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Let H ′ an arbitrary finite subgraph of G, and choose a finite subgraph H of
G such that each component of G −H satisfies the assertions (1) and (2); i.e.,
if Q is a component of G − H, Q must be associated with an ordinal number
ν < µ. Then, from the induction hypothesis, Q cannot be associated with an
ordinal number 6= ν, and further every component of G−H ′ is associated with
an ordinal number ν′ < ν. Therefore we can conclude the following: If Q′ is a
component of G− (H ∪H ′), then Q′ is associated with only one ordinal number
ν′ with ν′ < µ.

By Lemma 3.2 there exist at most finitely many components of G−H ′ each
of which is not associated with an ordinal number < µ, and therefore we have
the property (1). Further, from the assertion quoted above and Lemma 3.1, we
conclude that every component of G−H ′ satisfies the condition (2). ¤

According to Theorem 3.3, we may say that a graphG has an order µ, denoted
by o(G) = µ, if G is associated with an ordinal number µ.

As a main result in this section, we classify the graphs which have orders:

Theorem 3.4. A connected graph G contains no one-way infinite path if and
only if o(G) exists.

Proof. First assume that G does not contain a one-way infinite path. In order to
show that o(G) exists, suppose to the contrary that G does not have an order.
By Lemma 3.1, for every finite subgraph H of G, there exists a component of
G−H which does not have an order.

Now let v0 be an arbitrary vertex of G, and consider the components of G−v0.
Since {v0} clearly is a finite subgraph of G, there exists a component (say G1) of
G−v0 which does not have an order. We choose a vertex v1 ∈ V (G1) adjacent to
v0, and consider the graph G1−v1 (= G−{v0, v1}). Using the similar argument
we can obtain a component (say G2) of G1 − v1 which has an order. Then we
choose a vertex v2 ∈ V (G2) which is adjacent to v1. By continuing this process
we finally obtain a one-way infinite path (v0, v1, v2, · · · ) in G, which contradicts
to the hypothesis.

Conversely suppose that G has an order and contains a one-way infinite path
P . Note that, for every finite subgraph H of G, there exists a component of
G−H containing a one-way infinite path as a subpath of P . Therefore we can

choose such a subgraph H̃ of G such that o(Q) < o(G) for every component Q

of G− H̃, a contradiction. ¤

Obviously, if a connected graph G has an order µ and there are infinitely
many connected pairwise disjoint subgraphs of G all of order λ, then µ > λ.
Thus if G contains infinitely many connected pairwise disjoint copies of G as
subgraphs, G cannot have an order. We present some properties concerning the
order of a graph which can be easily verified from Theorem 3.4.

Corollary 3.5. Let G and G′ be connected graphs containing no one-way infinite
path.
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(1) If G ∩G′ is finite, then o(G ∪G′) = max{o(G), o(G′)}.
(2) If G ⊆ G′, then o(G) ≤ o(G′).
(3) If G is an induced subgraph of G′ and G′−G is finite, then o(G) = o(G′).

Corollary 3.6. If G is a connected graph containing no one-way infinite path
and H is a subdivision of G, then o(G) = o(H).

As the second main concept of this section, we introduce the kernel of a
connected graph which has an order. For this we need a crucial theorem.

Theorem 3.7. Let G be a connected graph with o(G) = µ > 0 and let H, H ′

are finite subgraphs of G. If o(Q′) < µ for every component Q′ of G − H and
G−H ′, then o(Q) < µ for every component Q of G− (H ∩H ′).

Proof. Let Q be a component of G − (H ∩ H ′). If Q ∩ H = ∅ or Q ∩ H ′ = ∅,
then o(Q) < µ from the hypothesis. Now let

H̃ := Q ∩H 6= ∅ and H̃ ′ := Q ∩H ′ 6= ∅
Then we see that H̃ ∩ H̃ ′ = ∅, and further o(Q′) < µ for every component Q′

of Q − H̃ (or of Q − H̃ ′). Let us denote Q′
1, . . . , Q

′
r the components of Q − H̃

which are contained in H̃ ′ (in the natural order). Then it is clear that r ≤ |H̃ ′|.
Set

B := Q− [Q′
1 ∪ · · · ∪Q′

r]

and B1, . . . , Bs the components of B. Since Q is connected, it follows that

s ≤ |H̃|. Further we see that, for each component Q′′ of Q− H̃ ′,

Bi ∩Q′′ = ∅ or Bi ⊆ Q′′

for all i = 1, . . . , s. Let us denote Q′′
1 , . . . , Q

′′
t the components of Q − H̃ ′ con-

taining a Bi. Then we have t ≤ s, and from the assumption we can conclude
o(Q′

i) < µ for all i = 1, . . . , s and o(Q′′
j ) < µ for all j = 1, . . . , t. Therefore, by

Corollary 3.5 (3), o(Bi) < µ for all i = 1, . . . , s.

Now let B′
j be the bridge of H̃ with B′

j − H̃ = Q′
j for all j = 1, . . . , r. Then,

from Corollary 3.5 (2), we have o(B′
j) < µ, and so

Q =

[
s⋃

i=1

Bi

]
∪



r⋃

j=1

Bj


 .

Further, if X,Y ∈ {B1, . . . , Bs, B
′
1, . . . , B

′
r} with X 6= Y , then X ∩ Y ⊆ H̃.

Thus, by Corollary 3.5 (1), we obtain

o(Q) = max{o(B1), . . . , o(Bs), o(B
′
1), . . . , o(B

′
r)} < µ

as desired. Our proof is complete. ¤

Now we are prepared to introduce the concept of the kernel of a graph G with
o(G) = µ, denoted by ker(G).
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If G is finite (i.e. µ = 0), then we set ker(G) = G. On the other hand, if
µ > 0, ker(G) is defined by the intersection of all induced finite subgraphs H
of G such that every component Q of G −H satisfies the condition o(Q) < µ.
Then, from the definition, we can easily verify the following.

Corollary 3.8. Let G be a connected graph with o(G) = µ > 0. Then:

(1) o(Q) < µ for every component Q of G− ker(G).
(2) For each ordinal number ν with ν < µ, there exist infinitely many com-

ponents Q of G− ker(G) with o(G) ≥ ν.

Proof. The assertion (1) follows from Theorem 3.7 and the definition of the
kernel. On the other hand, by Lemma 3.1 we can easily obtain the condition
(2). ¤

Corollary 3.9. If H is a finite subgraph of a connected graph G, then

ker(G−H) = ker(G)−H

Proof. Set o(G) = µ. Then, by Corollary 3.5 (2), we have ker(G − H) = µ.
If µ = 0, the assertion is obvious. On the other hand, if µ > 0, consider the
subgraph (G−H)− (ker(G)−H) of G. Since µ > 0, it follow that the order of
each component of the subgraph is less than µ, and therefore

ker(G−H) ⊆ ker(G)−H.

By Theorem 3.7 we can finally conclude the assertion of this corollary. ¤
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