DOI QR코드

DOI QR Code

ON THE OSCILLATION OF SECOND-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS ON TIME SCALES

  • Zhang, Quanxin (Department of Mathematics and Information Science, Binzhou University) ;
  • Sogn, Xia (Department of Mathematics and Information Science, Binzhou University) ;
  • Gao, Li (Department of Mathematics and Information Science, Binzhou University)
  • Received : 2011.03.17
  • Accepted : 2011.06.10
  • Published : 2012.01.30

Abstract

By using the generalized Riccati transformation and the inequality technique, we establish some new oscillation criterion for the second-order nonlinear delay dynamic equations $$(a(t)(x^{\Delta}(t))^{\gamma})^{\Delta}+q(t)f(x({\tau}(t)))=0$$ on a time scale $\mathbb{T}$, here ${\gamma}{\geq}1$ is the ratio of two positive odd integers with $a$ and $q$ real-valued positive right-dense continuous functions defined on $\mathbb{T}$. Our results not only extend and improve some known results, but also unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation.

Keywords

References

  1. Hilger, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18 (1990) 18-56. https://doi.org/10.1007/BF03323153
  2. Agarwal, R.P., Bohner, M., O'Regan, D., Peterson, A.: Dynamic equations on time scales: a survey, J. Comput. Appl. Math.,141 (2002) 1-26. https://doi.org/10.1016/S0377-0427(01)00432-0
  3. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston , 2001.
  4. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales, Birkhauser, Boston , 2003.
  5. Bohner, M., Saker, S.H.:Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mt. J. Math.,34 (2004) 1239-1254. https://doi.org/10.1216/rmjm/1181069797
  6. Erbe, L.: Oscillation criteria for second order linear equations on a time scale, Can. Appl. Math. Q., 9 (2001)345-375.
  7. Erbe, L., Peterson, A., Rehak, P.: Comparison theorems for linear dynamic equations on time scales, J. Math. Anal. Appl., 275(2002) 418-438. https://doi.org/10.1016/S0022-247X(02)00390-6
  8. Erbe, L., Hassan, T.S., Peterson, A.:Oscillation of third order functional dynamic equations with mixed arguments on time scales, J. Appl.Math. Comput., 34(2010) 353-371. https://doi.org/10.1007/s12190-009-0326-6
  9. Sun, S., Han, Z., Zhang, C.:Oscillation of second order delay dynamic equations on time scales, J. Appl. Math. Comput., 30(2009) 459-468. https://doi.org/10.1007/s12190-008-0185-6
  10. Zhang, Q., Gao, L., Wang, L.: Oscillation of second-order nonlinear delay dynamic equations on time scales, Comput. Math. Appl., doi:10.1016/j.camwa.2010.10.005.
  11. Grace, S.R., Bohner, M., Agarwal, R.P.: On the oscillation of second-order half-linear dynamic equations, J. Difference Equ. Appl.,15(5), (2009)451-460. https://doi.org/10.1080/10236190802125371
  12. Zhang, Q., Gao, L.:Oscillation of second-order nonlinear delay dynamic equations with damping on time scales, J. Appl. Math. Comput. ,doi: 10.1007/s12190-010-0426-3 (2010).
  13. Agarwal, R.P., Bohner, M., Saker, S.H.: Oscillation of second order delay dynamic equations, Can. Appl. Math. Q., 13 (2005) 1-18 .
  14. Sahiner, Y.: Oscillation of second order delay differential equations on time scales, Nonlinear Anal. TMA , 63(2005) 1073-1080 . https://doi.org/10.1016/j.na.2005.01.062
  15. Erbe, L., Peterson, A., Saker, S.H.: Oscillation criteria for second order nonlinear delay dynamic equations, J. Math. Anal. Appl., 333 (2007) 505-522. https://doi.org/10.1016/j.jmaa.2006.10.055
  16. Saker, S.H.: Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comput. Appl. Math. , 177 (2005) 375-387. https://doi.org/10.1016/j.cam.2004.09.028
  17. Saker, S.H., O'Regan, D.: New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution, Commun. Nonlinear Sci. Numer. Simulat. , 16 (2011)423-434. https://doi.org/10.1016/j.cnsns.2009.11.032
  18. Han, Z., Li, T., Sun, S., Zhang, C.: Oscillation for second-order nonlinear delay dynamic equations on time scales, Adv. Diff. Equ. , Article ID 756171 13 pages (2009).
  19. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, Second Edition, Cambridge Univ. Press, Cambridge, UK, 1988.
  20. Philos, Ch.G.: Oscillation theorems for linear differential equations of second order, Arch. Math. ,53 (1989)482-492.
  21. Saker, S.H.:Oscillation theorems for second-order nonlinear delay difference equations, Peri. Math. Hun. ,47(2003) 201-213. https://doi.org/10.1023/B:MAHU.0000010821.30713.be