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MODIFIED MULTIPLICATIVE UPDATE ALGORITHMS FOR

COMPUTING THE NEAREST CORRELATION MATRIX†

JUN-FENG YIN∗ AND YUMEI HUANG

Abstract. A modified multiplicative update algorithms is presented for
computing the nearest correlation matrix. The convergence property is
analyzed in details and a sufficient condition is given to guarantee that
the proposed approach will not breakdown. A number of numerical experi-
ments show that the modified multiplicative updating algorithm is efficient,
and comparable with the existing algorithms.
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1. Introduction

Correlation matrix plays a very important role in a large number of areas in
finance and risk management, e.g., in the applications of the BGM interestrate
option models, credit-derivative pricing or credit risk management, stress-testing
and scenario analysis for market risk management purpose [7].

Since the (i, j) entry of the correlation matrix represents the correlation coef-
ficient between two financial products, the matrix should be symmetric positive
semidefinite with unit diagonal. However, the correlation matrix obtained from
practical finance applications is real symmetric, but no more positive semidef-
inite due to some constraints or limitations of information. The existence of
the negative eigenvalue will lead to the breakdown of standard approaches in
financial analysis.

Thus, in practical applications from finance and risk management, assume
that A ∈ Rn×n is a real symmetric matrix, it is interesting to look for a nearest
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correlation matrix H ∈ Rn×n to minimize

f(H) =
1

2

∥∥A−H
∥∥2
F
, (1)

where H is a symmetric positive semidefinite matrix with unit diagonal. Here,
‖ · ‖F represents the Frobenius norm of the corresponding matrix.

This problem attracted great interest of a number of researchers in past decade
[1, 4, 5, 6, 9, 11]. A general methodology for a valid correlation matrix was firstly
presented in [6], which include the hypersphere decomposition method and the
spectral decomposition method. These methods were further improved in [9].
In addition, Higham presented a modified alternating projections method and
analyzed its convergence in detail in [5]. For the details of more algorithms, we
refer readers to [10, 11].

It is well known that H has a decomposition of the form H = BBT with
rank(B) = rank(H), since H is symmetric semi-definite. From the viewpoint of
matrix factorization, an equivalent problem is considered instead of problem (1)
in this paper as follow: given a symmetric matrix A ∈ Rn×n, we are looking for
the matrices B ∈ Rn×n and C ∈ Rn×n to minimize the cost function

f(B,C) =
1

2

∥∥A−BC
∥∥2
F
, (2)

with the constraints B = CT and BC has unit diagonal. Then, H = BC = BBT

is symmetric positive semidefinite with unit diagonal, and thus a solution of the
original problem (1).

By simply deduction, the gradients of the function f(B,C) with respect to B
and C are given by

grad(B) :=
∂f(B,C)

∂B
= (BC −A)CT , (3)

grad(C) :=
∂f(B,C)

∂C
= BT (BC −A). (4)

By the Karush-Kuhn-Tucker (KKT) optimality condition, it is clear that the
cost function f(B,C) is minimized in the case of grad(B) = 0 and grad(C) = 0.

In order to minimize the cost function (2) with respect to B and C, a general
method alternatively updating B and C respectively with their corresponding
gradients is given as follow: given an arbitrary initial guesses B(0) and C(0),
compute {

Bk = Bk−1 − ζgrad(Bk−1),

Ck = Ck−1 − ηgrad(Ck−1),
k = 1, 2, . . . (5)

until converges where grad(B) and grad(C) are the gradients defined by (3) and
(4), ζ and η are positive parameters. It is obvious that as long as ζ and η are
sufficiently small, the update should reduce the object function 1

2‖A − BC‖2F
and finally obtain the approximate optimal solution of the original problem (1).
This idea of alternatively updating between two directions can also be found in
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the Hermitian and skew-Hermitian splitting iteration method for solving non-
Hermitian positive-definite systems of linear equation, see [2, 3] for the detail.

As a special case, we design a modified multiplicative updating (MMU) al-
gorithm for the solution of problem (2) based on multiplicative updating (MU)
algorithm proposed by Lee and Seung [8]. The convergence performance of
the new algorithm is discussed in detail. We also give a sufficient condition to
guarantee that the new algorithm will not breakdown. Numerical experiments
further show that modified multiplicative updating algorithm is efficient, and
comparable with the existing algorithms.

This paper is organized as follow. In the next section, we present the mod-
ified multiplicative updating algorithm and analyze its properties. Numerical
experiments for some model matrices are presented in Section 3 and finally, the
conclusion and future work are presented in Section 4.

2. Modified multiplicative updating algorithm

In this section, a modified multiplicative updating algorithm is proposed for
computing the nearest correlation matrix to minimize the cost function (2), and
then its properties are discussed in detail.

Before going on, we first briefly review the multiplicative updating algorithm
proposed by Lee and Seung [8] and its properties. Multiplicative updating al-
gorithm is a fast and effective method for computing the non-negative matrix
factorization, and thus widely used in image processing, text mining, spectral
data analysis and air quality analysis.

Given a nonnegative A ∈ Rn×n, the multiplicative updating algorithm can
minimize ‖A − BC‖2F in terms of two nonnegative matrices B and C by the
following update rules:

Bij ← Bij
(ACT )ij
(BCCT )ij

, Cij ← Cij
(BTA)ij
(BTBC)ij

. (6)

When A, B and C are nonnegative matrices, it is obvious from (6) that
the elements of B and C will increase when (BC)ij < Aij and decrease when
(BC)ij > Aij for 1 ≤ i, j ≤ n. It was proved in [8] that the cost function
1
2‖A − BC‖2F is nonincreasing under this update rules (6), and it is invariant
under these updates if and only if B and C are at a stationary point of the
distance.

The multiplicative updating algorithm can be described as follow.

Algorithm 2.1. The multiplicative updating algorithm
1. Choose B0 and C0.
2. For j = 1, 2, . . . , until convergence, Do:
3. Compute Wk =

(
ACT

k−1

)
./
(
Bk−1Ck−1C

T
k−1

)
;

4. Compute Bk = Bk−1. ∗Wk;
5. Compute Vk =

(
BT

k A
)
./
(
BT

k BkCk−1

)
;

6. Compute Ck = Ck−1. ∗ Vk;
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7. EndDo

Denote .∗ and ./ the elementwise multiplication and elementwise division
between two matrices respectively, the multiplicative updating rule (6) can be
written as follow:

B = B. ∗ (ACT
)
./
(
BCCT

)
= B. ∗ (BCCT − grad(B)

)
./
(
BCCT

)

= B −B./
(
BCCT

)
. ∗ grad(B)

and

C = C. ∗ (BTA
)
./
(
BTBC

)
= C. ∗ (BTBC − grad(B)

)
./
(
BTBC

)

= C − C./
(
BTBC

)
. ∗ grad(C).

Thus, the multiplicative updating algorithm actually alternatively update B
and C with their corresponding gradients respectively at each iteration step as
follow: {

Bij = Bij − ζij [grad(B)]ij ,

Cij = Cij − ηij [grad(C)]ij ,
(7)

where ζij = Bij/(BCCT )ij and ηij = Cij/(B
TBC)ij are the chosen parameters,

1 ≤ i, j ≤ n. From the convergence analysis in [8], such a choice for these
parameters can guarantee the convergence of multiplicative updating algorithm
when A, B and C are nonnegative.

In the following, we present a modified multiplicative update algorithm for
computing the nearest correlation matrix H in terms of B and C to minimize
the cost function of problem (2), combined with two constraints B = CT and
BC has unit diagonal.

In order to satisfy the first constraint B = CT , we define

B = CT =
B + CT

2
,

after the multiplicative updating (7), so that the result matrix H = BC = BBT

is symmetric semidefinite.
Let D be a diagonal matrix whose diagonal is the same as BBT . It is obvious

that all the elements are positive. Then, by updating

Bnew = D−1/2B, Cnew = CD−1/2,

where the elements of D1/2 are the square root of those of D, the result matrix

Hnew = BnewCnew = D−1/2BBTD−1/2,

has unit diagonal. Note that in this case, Bnew = CT
new is still satisfied.

More precisely, the modified multiplicative updating algorithm can be de-
scribed in detail as follow.
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Algorithm 2.2. The modified multiplicative updating algorithm
1. Choose B0 and C0.
2. For k = 1, 2, . . . , until convergence, Do:
3. Compute Wk = (ACT

k−1)./(Bk−1Ck−1C
T
k−1);

4. Compute Bk = Bk−1. ∗Wk;
5. Compute Vk = (BT

k A)./(B
T
k BkCk−1);

6. Compute Ck = Ck−1. ∗ Vk;
7. Set Bk = (Bk + CT

k )/2;
8. Compute D = diag(BkB

T
k );

9. Set Bk = D−1/2Bk

10. Set Ck = BT
k ;

11. EndDo

It is seen that even the initial matrices B0 and C0 are chosen randomly, the
condition Bk = CT

k is still satisfied after the 10th step of the algorithm 2.2.
Consequently, the result matrix Hk = BkCk is a symmetric positive semidefinite
matrix with unit diagonal, and thus a valid correlation matrix.

It is clear that the algorithm 2.2 is also an alternative multiplication updating
method based on the gradients in terms of B and C respectively. Thus, the
convergence property of algorithm 2.2 is given as follow.

Proposition 2.1. Assume that A ∈ Rn×n is a real symmetric matrix, H∗ =
B∗C∗ ∈ Rn×n is the result matrix given by the algorithm 2.2. Then, H∗ a
correlation matrix, and satisfied

1

2

∥∥A−H∗∥∥2
F
= min

H∈H
1

2

∥∥A−H
∥∥2
F
.

where H is the set of all correlation matrix.

Proof. From the algorithm 2.2, it is clear that

H∗ = B∗C∗ = B∗(B∗)T ,

is symmetric semidefinite with unit diagonal, thus it is a correlation matrix.
Note that the algorithm 2.2 is an alternative multiplication updating method

with the gradients defined in (3) and (4), the algorithm converges if and only if
both the conditions grad(B) = 0 and grad(C) = 0 are satisfied. In this case, we
have

∂grad(B)

∂B
= CCT ≥ 0,

∂grad(C)

∂C
= BBT ≥ 0.

Thus, the cost function f(B,C) is minimized and H∗ is the nearest correlation
matrix. ¤

Then, we consider the conditions to guarantee that the modified multiplicative
updating algorithm will not breakdown when A, B and C are nonnegative. Here
and in the following, X ≥ 0 (X > 0) means all the elements of X are nonnegative
(positive).
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Assume that A, B and C are nonnegative, some properties of the matrix
generated in modified multiplicative updating algorithm 2.2 are presented as
follow.

Lemma 2.1. Assume that A ≥ 0, B0 ≥ 0, C0 ≥ 0 and both B0 and C0 have
full rank, then

(1) both Bk and Ck in modified multiplicative updating algorithm 2.2 are
nonnegative and have full rank, k = 1, 2, . . . , n;

(2) both BkB
T
k and BT

k Bk are positive and full rank, k = 1, 2, . . . , n.

Proof. From line 3 of algorithm 2.2, it is seen that Wk is nonnegative when A,
Bk−1 and Ck−1 are nonnegative, which results in Bk is nonnegative. Similarly,
both Vk and Ck are nonnegative for k = 1, 2, . . . , n. It is obvious that both Bk

and Ck are nonnegative after the updating of line 7 and line 8 in algorithm 2.2.
It is also seen that both Bk and Ck have full rank if both Bk−1 and Ck−1

have full rank from line 3 and 5 of algorithm 2.2.
On the other hand, since Bk has full rank, Bk has not zero row or column.

Thus, we have
(BkB

T
k )ij > 0, 1 ≤ i, j ≤ n.

So does for BT
k Bk. Since the determinant of BkB

T
k and BT

k Bk are the square of
that of Bk, and thus not equal to 0. This indicate that both BkB

T
k and BT

k Bk

have full rank, k = 1, 2, . . . , n. ¤
Denote Hk = BkB

T
k , k = 1, 2, . . . , n. Under the assumptions of lemma 2.1, it

also can be seen that Hk are full rank and nonnegative for k = 1, 2, . . . , n.
It is clear that the modified multiplicative updating algorithm 2.2 will break-

down when BkCkC
T
k or BT

k BkCk−1 has zero elements. The following proposition
gives a sufficient condition to guarantee that the modified multiplicative updat-
ing algorithm 2.2 will not breakdown.

Proposition 2.2. If A ≥ 0, B0 ≥ 0 and C0 ≥ 0 and both B0 and C0 have full
rank, then the modified multiplicative updating algorithm 2.2 will not breakdown.

Proof. From lemma 2.1, it is clear that Bk and Ck are full rank and nonnegative,
k = 1, 2, . . . , n. Since Ck = BT

k , we have BkCk is positive and full rank from
lemma 2.1. It follows that BkCkC

T
k is positive, and the modified multiplicative

updating algorithm 2.2 does not breakdown in line 3.
Since Bk is nonnegative and has full rank, then BT

k Bk is positive and full
rank from lemma 2.1. It follows that BT

k BkCk−1 is positive, and the modified
multiplicative updating algorithm 2.2 does not breakdown in line 5. ¤

If the matrices A, B and C are not nonnegative, it could happen that BkCkC
T
k

or BT
k BkCk−1 has some zero elements. In this case, we can introduce a positive

parameter ε > 0, so that the update rules in line 3–6 of algorithm 2.2 can be
replaced by

Bij ← Bij
(ACT )ij

(BCCT )ij + ε
, Cij ← Cij

(BTA)ij
(BTBC)ij + ε

.
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However, the choice of ε should be investigated from practical application and
it is difficult to find the optimal parameter theoretically.

3. Numerical Results

In this section, a number of numerical experiments are presented to show the
convergence behavior of modified multiplicative updating algorithm.

All experiment were performed on a PC-Pentium(R) using Matlab 6.5. The
initial matrix B0 and C0 are chosen randomly and nonnegative. Denote rk =
‖A−BkCk‖F , the stopping criterion is

‖rk − rk−1‖ < ε

where ε = 10−4, or the number of maximal iteration, e.g., 100, is reached.
The first example A ∈ R4×4 is taken from [4], where the modified alternatively

project (MAP) method is proposed.
Denote HMAP and HMMU be the nearest matrix obtained by modified alter-

natively project method [4] and the modified multiplicative updating algorithm
respectively. The original matrix A and the computed correlation matrices are
listed in Table 1, as well as the corresponding Frobenius norms. The eigenvalues
of A, HMAP and HMMU are illustrated in Table 2.

Table 1. The matrices A, HMAP and HMMU.

A HMAP HMMU

1 1 0 1.0000 0.7607 0.1573 1.0000 0.7410 0.0978
1 1 1 0.7607 1.0000 0.7607 0.7410 1.0000 0.7408
0 1 1 0.1573 0.7607 1.0000 0.0978 0.7408 1.0000

‖A−HMAP‖F = 0.5278 ‖A−HMMU‖F = 0.5363

Table 2. The eigenvalues of A, HMAP and HMMU.

A HMAP HMMU

-0.4142 -0.000013 0.00000031
1.0000 0.8427 0.9021
2.4142 2.1573 2.0978

From Tables 1 and 2, it is observed that HMMU is symmetric semidefinite,
which shows that the modified multiplicative updating algorithm is efficient, and
can find a nonnegative correlation matrix.

From Table 1, it is seen that HMAP is relatively closer to A than HMMU from
the view point of the F-norm. However, it is found that HMAP still has small
negative eigenvalue while all the eigenvalues of HMMU are positive. Thus, HMMU

is better than HMAP in the sense of nonnegative property.
Further, we depict the curve of Frobenius norm between A and computed

approximate matrix versus the number of iteration in Figure 1.



208 Jun-Feng Yin and Yumei Huang

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

iterations

||A
−

H
|| F

 

 
MMU
MAP

Figure 1. The curves of ‖A − BkCk‖F versus the number of
iteration of MMU and MAP method

From Figure 1, it is seen that the modified multiplicative updating algorithm
converges monotonically, e.g., ‖A − BkCk‖F is decreasing monotonically and
converges to a unique solution. On the other hand, it is observed that ‖A−Hk‖F
of MAP method proposed by Higham is increasing monotonically and converges
to a unique solution.

The second example

A =




1.00 0.50 0.50 0 0
0.50 1.00 0.84 0.84 0.84
0.50 0.84 1.00 0.84 0.84
0 0.84 0.84 1.00 0.84
0 0.84 0.84 0.84 1.00




,

is taken from [1] while the obtained nearest matrix in this paper is

H =




1 0.4964 0.5008 0.0011 0.0050
0.4964 1 0.8819 0.7317 0.7363
0.5008 0.8819 1 0.7272 0.7305
0.0011 0.7317 0.7272 1 0.8432
0.0050 0.7363 0.7305 0.8432 1




,

with ‖A−H‖F = 0.3131.
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Using modified multiplicative updating algorithm, the computed approximate
nearest matrix is

HMMU =




1.0000 0.4741 0.4731 0.0165 0.0240
0.4741 1.0000 0.8414 0.8085 0.8105
0.4731 0.8414 1.0000 0.8072 0.8094
0.0165 0.8085 0.8072 1.0000 0.8433
0.0240 0.8105 0.8094 0.8433 1.0000




,

with ‖A−HMMU‖F = 0.1107. This further verified that the MMU algorithm is
efficient, since the obtained object function is smaller than that of the method
in [1].

Moreover, the eigenvalues of these matrices are listed Table 3.

Table 3. The eigenvalues of A, H and HMMU.

A H HMMU

-0.0859 0.1031 0.0026
0.1600 0.1182 0.1567
0.1600 0.1568 0.1586
1.1477 1.1881 1.1243
3.6182 3.4338 3.5578

From Table 3, it is observed that HMMU is symmetric definite (nearly semi-
definite), and thus a valid nonnegative correlation matrix.

4. Conclusion

In this paper, a modified multiplicative updating algorithm for computing the
nearest correlation matrix was proposed and the convergence property of the
new algorithm was analyzed. Numerical experiments examined the efficiency of
proposed algorithm. Future work on how to accelerate the convergence speed
will be further studied.
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