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A STRONGLY CONVERGENT PARALLEL PROJECTION

ALGORITHM FOR CONVEX FEASIBILITY PROBLEM†

YA-ZHENG DANG AND YAN GAO∗

Abstract. In this paper, we present a strongly convergent parallel pro-
jection algorithm by introducing some parameter sequences for convex fea-
sibility problem. To prove the strong convergence in a simple way, we
transmit the parallel algorithm in the original space to an alternating one
in a newly constructed product space. Thus, the strong convergence of the
parallel projection algorithm is derived with the help of the alternating one
under some parametric controlling conditions.
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1. Introduction

Let Ci, i = 1, 2, · · · ,m be a finite family of closed convex sets in a Hilbert
space H. The convex feasibility problem (CFP) is to find

x ∈ C =

m⋂

i=1

Ci. (1)

The convex feasibility problem has many applications in some areas of science,
engineering and management, for instance optimization [5], systems engineering
[27], approximation theory [14, 15], image reconstruction from projections and
computerized tomography [6, 19], control problem [1, 17], crystallography [22]
and so on. Projection methods are widely used in convex feasibility problem.
Over the past years, projection methods for the convex feasibility problem were
comprehensively investigated in the literatures [2, 4, 11, 12, 19] and references
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therein. The sequential algorithms were proposed in [5] and [20], which employ
one projection at each step. The parallel algorithms were developed in [8, 10],
which employ m projections at each step. The block-iterative algorithms were
proposed in [7, 18], which employ r(1 < r < m) projections at each step. The
string-averaging iterative algorithms were developed in [6, 23], which employ
h(h > m)projections at each step. But most methods mentioned above have
only weak convergence. For strong convergence, some extra assumptions on the
sets Ci, i = 1, 2, · · · ,m such as compactness [13], finite dimensionality [3] or
uniform convexity [3, 24] are required. However, in most applications, these
assumptions are not satisfied. In this paper, we propose a strongly convergent
parallel projection algorithm for solving the convex feasibility problem, in fact,
it is a modification of the general parallel projection algorithm. The algorithm is
constructed by introducing three parameter sequences. Thus, the strong conver-
gence is guaranteed without extra assumptions on the sets Ci, i = 1, 2, · · · ,m.

2. Preliminaries

Throughout the rest of the paper, I denotes the identity operator, 〈· ·〉 and
‖ · ‖ denote the usual inner product and norm in H, respectively. 〈〈· ·〉〉 and
‖| · |‖ denote the inner product and norm in (H)m, respectively. A sequence
{xk}k≥0 is said to be strongly convergent to a point x∗ if ‖xk − x∗‖ → 0.

Recall the well -known concepts below.
Definition 1. Let T : H → H.
(a) T is said to be non-expansive if

‖Tx− Ty‖ ≤ ‖x− y‖ (2)

for all x, y ∈ H.
(b) T is said to be firmly non-expansive if

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2 (3)

for all x, y ∈ H.

It is obvious that (3) ⇒ (2). If T is non-expansive, and then its fixed point
set is closed and convex. Moreover, if T1 and T2 are non-expansive operators, so
are the composition T1 ◦T2 and the convex combination (1−α)T1 +αT2, where
α ∈ [0, 1].
Definition 2. For a given closed nonempty convex subset C ofH, an orthogonal
projection from H onto C is defined by

PC(y) = argmin{‖z − y‖ z ∈ C}, y ∈ H. (4)

We need the lemmas below for the convergence analysis in the section 4.
Lemma 1. Let C be a nonempty closed convex subset of H. Then, for any
x ∈ H and z ∈ C

〈PC(x)− x, PC(x)− z〉; (5)

‖PC(x)− z‖2 ≤ ‖x− z‖2 − ‖PC(x)− x‖2. (6)
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The inequalities (5) and (6) imply that PC is firmly non-expansive.
Lemma 2 ([28]). Assume that {γk} is a sequence of nonnegative real numbers
such that

γk+1 ≤ (1− αk)γk + αkδk, k ≥ 0,

where αk ∈ (0, 1) and {δk} is a real sequence in R such that
(1)

∑∞
k=0 αk = ∞;

(2) lim supk→∞ δk ≤ 0 or
∑∞

k=0 |αkδk| < ∞. Then, limk→∞ γk = 0.
Lemma 3 (Demi-closed principle [28]). Let C be a nonempty closed convex
subset of a real Hilbert space H and let T : C → C be a non-expansive such that
Fix(T ) 6= ∅. Assume {xk} is a sequence in C which weakly converges to x ∈ C
and {(I − T )xk} converges to y ∈ H weakly. Then, (I − T )x = y.
Lemma 4 ([26]). Let {xk} and {zk} be bounded sequences in a Banach space E
and let {βk} be a sequence in [0, 1] with 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1.
Suppose that xk+1 = (1 − βk)x

k + βkz
k for all k ≥ 0 and lim supk→∞(‖zk+1 −

zk‖ − ‖xk+1 − xk‖) < 0. Then, lim supk→∞ ‖zk − xk‖ = 0.

3. Algorithm description

3.1. A modified parallel projection algorithm. Now we give our modified
parallel projection algorithm for CFP.

Algorithm 3.1
Initialization: Take x0 ∈ H arbitrarily;
Iterative step:

xk+1 = αkx
0 + βkx

k + γk(λ

m∑

i=1

ωk
i Pi(x

k) + (1− λ)xk), (7)

where
∑m

i=1 ω
k
i = 1, 0 < ωk

i < 1 for all k > 0, λ ∈ (0, 2), αk, βk, γk ∈ (0, 1),
limk→∞ αk = 0,

∑
k≥0 αk = +∞, 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1 and

αk + βk + γk = 1.

3.2. Construction of a product- space. For viewing the parallel algorithm
(7) as an alternating one, we construct a product space as follows. Let

〈〈V,W 〉〉 := ω1〈v1, ω1〉+ ω2〈v2, ω2〉+ · · ·+ ωm〈vm, ωm〉,

‖|V |‖2 = 〈〈V, V 〉〉 =
m∑

i=1

ωi‖vi‖2,

where V = (v1, v2, · · · , vm) ∈ (H)m,W = (w1, w2, · · · , wm ∈ (H)m. Then, we
obtain a product space ((H)m, 〈〈, 〉〉, ‖| · |‖) with norm ‖| · |‖ derived from the
inner product 〈〈, 〉〉. We denote ((H)m, 〈〈, 〉〉, ‖| · |‖) for short by L, and denote
the points in L by capital letters.

Now we introduce two subsets of the defined space L. One is N ≡ C1 ×
C2 × · · · × Cm (the Cartesian product of the convex sets (Ci)1≤i≤m in H ) of
the space L. It is a closed convex subset of L. Projection onto N is denoted as
PN . The other one is D which is the image of H under the canonical imbedding
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q = H → (H)m, where for v ∈ H, we put q(v) ≡ (v, v, · · · , v). D is also a
diagonal vector subspace of L. Projection onto D is denoted as PD.

Clearly, if C 6= ∅, we have that N
⋂
D 6= ∅, moreover, q(C) = N

⋂
D. Hence,

obtaining a point in C ⊂ His equivalent to obtaining a point in N
⋂
D ⊂ L.

3.3. Switching the parallel algorithm to an alternating one. In order
to construct alternating projection algorithm in space L , we need some lemmas
below:
Lemma 5 ([25]). Let V ≡ (v1, v2, · · · , vm) ∈ L. Then

(1) PDV = q(
∑m

i=1 ωivi),
∑m

i=1 ωi = 1;
(2) PNV = (P1v1, P2v2, · · · , Pmvm).
Lemma 5 implies that the operator PD is linear.

Lemma 6 ([21]). Let RC = 2PC − I( PC as in (4)). Then, operator RC with
respect to C is non-expansive.
Lemma 7. Let N be a nonempty convex subset of L and let U = I + λ(PN −
I), (∀λ ∈ [0, 2]). Then, U is non-expansive.
Proof. Let α = λ/2. The operator RN = 2PN − I with respect to N is non-
expansive (from Lemma 6). We can write

U = I + 2α(PN − I) = (1− α)I + αRN ,

where α ∈ [0, 1]. Since both I and RN are non-expansive, we have that U is also
non-expansive. ¤

Now we describe our alternating projection algorithm in the product space
L.

Algorithm 3.2
Initialization: Select a point X0 in D arbitrarily;
Iterative step:

Xk+1 = αkX
k + βkX

k + γk(λPDPN (Xk) + (1− λ)Xk), (10)

where λ ∈ (0, 2), αk, βk, γk ∈ (0, 1), the conditions below are satisfied:




(11a) limk→∞ αk = 0,
∑

k≥0 αk = +∞,

(11b) 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1,
(11c) αk + βk + γk = 1.

(11)

4. Convergence analysis

In this section we first show the strong convergence of the algorithm 3.2, and
then on the base of the equivalence between the algorithm 3.1 and the algorithm
3.2, we give the strong convergence theorem of the algorithm 3.1.
Theorem 1. Suppose that D

⋂
N 6= ∅. Then, for any X0 ∈ D, sequence

{Xk}k≥0 generated by the algorithm 3.2 converges to PD
⋂

N (X0) strongly.
Proof. Let T = PD ◦ (I + λ(PN − I)). Then, by Lemma 7, T is non-expansive,
since PD and I + λ(PN − I) are non-expansive. So, we may rewrite (10) as

Xk+1 = αkX
0 + βkX

k + γkT (X
k). (12)
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First, we prove that the sequence {Xk} is bounded. Pick Z ∈ D
⋂
N , then

‖|Xk+1 − Z|‖ = ‖|αkX
0 + βkX

k + γkT (X
k)− Z|‖

≤ αk‖|X0 − Z|‖+ βk‖|Xk − Z|‖+ γk‖|T (Xk)− Z|‖
≤ αk‖|X0 − Z|‖+ βk‖|Xk − Z|‖+ γk‖|Xk − Z|‖
= αk‖|X0 − Z|‖+ (1− αk)‖|Xk − Z|‖
≤ max{‖|X0 − Z|‖, ‖|Xk − Z|‖}.

Hence, {Xk} is bounded.
Second, we show that ‖|Xk − TXk|‖ → 0. Put

Gk =
Xk+1 − βkX

k

1− βk
,

for all k ≥ 0, that is

Xk+1 = (1− βk)G
k + βkX

k, ∀k ≥ 0. (13)

Notice that

Gk+1 −Gk =
αk+1X

0 + γk+1TX
k+1

1− βk+1
− αkX

0 + γkTX
k

1− βk

=
αk+1X

0

1− βk+1
+

1− βk+1 − αk+1

1− βk+1
TXk+1

− αkX
0

1− βk
− 1− βk − αk

1− βk
TXk

=
αk+1

1− βk+1
(X0 − TXk+1) +

αk

1− βk
(TXk −X0)

+TXk+1 − TXk.

It follows that

‖|Gk+1 −Gk|‖ ≤ αk+1

1− βk+1
‖|(X0 − TXk+1)|‖

+
αk

1− βk
‖|TXk −X0|‖+ ‖|Xk+1 −Xk|‖. (14)

This implies

‖|Gk+1 −Gk|‖ − ‖|Xk+1 −Xk|‖ ≤ αk+1

1− βk+1
‖|X0 − TXk+1|‖+

αk

1− βk
‖|TXk −X0|‖.

From (11), we have

lim sup
k→∞

(‖|Gk+1 −Gk|‖ − ‖|Xk+1 −Xk|‖) ≤ 0. (15)

Thanks to Lemma 4, we arrive at

lim
k→∞

‖|Gk −Xk|‖ = 0.

In view of (13), it is easy to obtain

Xk+1 −Xk = (1− βk)(G
k −Xk),
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this implies that

lim
k→∞

‖|Xk+1 −Xk|‖ = 0. (16)

From (12), we have

Xk+1 −Xk = αk(X
0 −Xk) + γk(TX

k −Xk),

together with (11) and (16), we get

‖|TXk −Xk|‖ → 0. (17)

Now, we prove that

lim sup
k→∞

〈〈X0 − Z0, Xk − Z0〉〉 ≤ 0, (18)

where Z0 = PD
⋂

NX0 . Since {Xk} is bounded, there exists a subsequence

{Xkj}j→∞ of {Xk} which converges to X∗ weakly. Without loss of generality,
we may assume that {Xk} converges to X∗ weakly. Therefore, in view of (17)
and Lemma 3 we have that X∗ ∈ D

⋂
N . From (5), we get

lim sup
k→∞

〈〈X0 − Z0, Xk − Z0〉〉 = lim
j→∞

lim sup
k→∞

〈〈X0 − Z0, Xkj − Z0〉〉

= lim sup
k→∞

〈〈X0 − Z0, X∗ − Z0〉〉 ≤ 0.

Next, we prove that Xk → Z0 in norm. From (10), we get

‖|Xk+1 − Z0|‖2 = 〈〈αkX
0 + βkX

k + γkTX
k − Z0, Xk+1 − Z0〉〉

≤ αk〈〈X0 − Z0, Xk+1 − Z0〉〉+ βk〈〈Xk − Z0, Xk+1 − Z0〉〉
+γk〈〈TXk − Z0, Xk+1 − Z0〉〉

≤ 1

2
βk(‖|Xk − Z0|‖2 + ‖|Xk+1 − Z0|‖2)

+αk〈〈X0 − Z0, Xk+1 − Z0〉〉
+
1

2
γk(‖|Xk − Z0|‖2 + ‖|Xk+1 − Z0|‖2)

=
1

2
(1− αk)(‖|Xk − Z0|‖2 + ‖|Xk+1 − Z0|‖2)

+αk〈〈X0 − Z0, Xk+1 − Z0〉〉
≤ 1

2
[(1− αk)‖|Xk − Z0|‖2 + ‖|Xk+1 − Z0|‖2]

+αk〈〈X0 − Z0, Xk+1 − Z0〉〉,
this implies that

‖|Xk+1 − Z0|‖2 ≤ (1− αk)‖|Xk − Z0|‖2 + 2αk〈〈X0 − Z0, Xk+1 − Z0〉〉.
By (18) and Lemma 2, we conclude that {Xk} converges to Z0 strongly. This

completes the proof of the theorem. ¤
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When we transform the situation of the foregoing sequence {Xk}k≥0 in the
product space L to the parallel sequence {xk}k≥0 in the original space H , we
can state our main result as follows:
Theorem 2. Assume C 6= ∅ Then, for any x0 ∈ H every sequence {xk}k≥0

generated by algorithm 3.1 converges to the projection of x0 onto C strongly.

Proof. Similar to that of Theorem 1: From Lemma 5, for ∀X ∈ D ⊂ L,X =
(x, x, · · · , x), PDPN (X) = (

∑m
i=1 ωiPi(x), · · · ,

∑m
i=1 ωiPi(x)), we get that (10)

in L is equivalent to (7) in H, then it is easy to obtain the result from Theorem
1. ¤

5. Conclusion

In this paper, the CFP is recast in the m-fold Cartesian product of the
original space. One work of the paper is transforming the modified parallel
projection algorithm in the original space to an alternating projection algorithm
in a product space. The other work of the paper is that the strong convergence
of the modified parallel projection algorithm is guaranteed without any special
assumptions on the m sets.
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