DOI QR코드

DOI QR Code

The Cross-sectional Mass Flux Observation at Yeomha Channel, Gyeonggi Bay at Spring Tide During Dry and Flood Season

단면 관측을 통한 경기만 염하수로의 대조기 평수시와 홍수시 유출입량 변화특성 조사

  • Lee, Dong-Hwan (Department of Oceanography, College of Natural Science, Inha University) ;
  • Yoon, Byung-Il (Department of Oceanography, College of Natural Science, Inha University) ;
  • Kim, Jong-Wook (Department of Oceanography, College of Natural Science, Inha University) ;
  • Gu, Bon-Ho (Department of Oceanography, College of Natural Science, Inha University) ;
  • Woo, Seung-Buhm (Department of Oceanography, College of Natural Science, Inha University)
  • 이동환 (인하대학교 자연과학계열 해양과학과) ;
  • 윤병일 (인하대학교 자연과학계열 해양과학과) ;
  • 김종욱 (인하대학교 자연과학계열 해양과학과) ;
  • 구본호 (인하대학교 자연과학계열 해양과학과) ;
  • 우승범 (인하대학교 자연과학계열 해양과학과)
  • Received : 2011.11.29
  • Accepted : 2012.01.26
  • Published : 2012.02.29

Abstract

To calculate the total mass flux that change in dry and flood season in the Yeomha Channel of Gyeonggi Bay, the 13 hour bottom tracking observation was performed from the southern extremity. The value of the total mass flux(Lagrange flux) was calculated as the sum of the Eulerian flux value and stroke drift value and the tidal residual flow was harmonically analyzed through the least-squares method. Moreover, the average during the tidal cycle is essential to calculate the mass flux and the tidal residual flow and there is the need to equate the grid of repeatedly observed data. Nevertheless, due to the great differences in the studied region, the number of vertical grid tends to change according to time and since the horizontal grid differs according to the transport speed of the ship as a characteristic of the bottom tracking observation, differences occur in the horizontal and vertical grid for each hour. Hence, the present study has vertically and horizontally normalized(sigma coordinate) to equate the grid per each hour. When compared to the z-level coordinate system, the Sigma coordinate system was evaluated to have no irrationalities in data analysis with 5% of error. As a result of the analysis, the tidal residual flow displayed the flow pattern of sagging in the both ends in the main waterway direction of dry season. During flood season, it was confirmed that the tidal residual flow was vertical 2-layer flow. As a result of the total mass flux, the ebb properties of 359 cm/s and 261 cm/s were observed during dry and flood season, respectively. The total mass flux was moving the intertidal region between Youngjong-do and Ganghwa-do.

경기만 염하수로 입구인 영종대교 남단에서 평수기와 홍수기에 13시간동안 연속적으로 층별 유속관측을 수행하였다. 홍수기와 평수기에 한강과 임진강으로의 평균 담수유입량은 각각 약 $8000m^3/s$, $200m^3/s$로 40배의 큰 차이를 보이는데 이러한 변화가 잔차류의 공간 분포와 총 유출입량에 어떠한 차이를 보이는지 분석하였다. 수집된 자료의 분석을 위하여 조석주기 동안의 평균이 필요하며, 반복 관측된 자료의 연직위치와 수평격자위치를 일치시킬 필요성이 있다. 따라서 본 연구에서 공간적 sigma 격자 체계로 변환시켰다. 변형된 sigma 좌표체계는 z-level상의 원시자료와 비교하였을 때 5%이내의 오차로 자료분석에 무리가 없는 것으로 판단되었다. 분석결과 평수기 단면 잔차류는 수로의 수심에 따라 패턴이 다른 수평적 2층 흐름 구조를 보였으며, 홍수기의 경우 표층에서는 낙조하고, 저층에서는 창조하는 수직적 2층 흐름구조를 보였다. 이는 담수의 유입량에 따라 단면에서 공간적 잔차류 흐름구조가 크게 변동되는 특성이 나타났다. 총 수송량은 평수기와 홍수기에 각각 $359m^3/s$, $261m^3/s$ 로 약 $100m^3/s$의 차이를 보였다. 홍수기 많은 양의 담수 유입이 발생하였지만, 총 수송량과 적은 상관도를 보인 것은 염하수로 남단 해역에서 Stokes drift의 크기가 강하게 나타나기 때문으로 보여지며, 총량은 강화도와 영종도 사이의 조간대 지역으로 이동하는 것으로 짐작된다.

Keywords

References

  1. 김정대, 정신택, 조홍연, 김태헌 (2010). 경기만 및 한강하구의 순유량 및 확산모형의 불확실성 분석. 한국해안.해양공학회, 22(5), 344-351.
  2. 김창식, 임학수, 김진아, 김선정, 박광순, 정경태 (2010). 경기만 조석 잔차류 산정 및 변동성. 한국해안.해양공학회, 22(6), 353-360.
  3. 봉종헌 (1978). 인천항부근 수로의 조류. The Journal of the Oceanological Spciety of Korea, 13(1), 29-34.
  4. 송용식, 우승범 (2011). 염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성. 한국해안.해양공학회, 23(5), 394-400. https://doi.org/10.9765/KSCOE.2011.23.5.393
  5. 이석우 (1972). 인천항의 조석.조류 및 조량에 대하여 The Journal of the Oceanological Society of Korea, 7(2), 86-97.
  6. 황산철, 전동철, 강재훈, 김철수 (2004). 소형선박용 찰탈식 ADCP 고정장치 개발 Ocean and Polar Research, 26(3), 481-486. https://doi.org/10.4217/OPR.2004.26.3.481
  7. Bret M. Webb, Jeffrey N. King, Bilge Tutak, Arnoldo Valle- Levinson. (2007). Flow structure at a trifurcation near a North Florida inlet Continental Shelf Research 27, 1528-1547. https://doi.org/10.1016/j.csr.2007.01.021
  8. Fugate, D.C., Friedrichs, C.T., Sanford, L.P. (2007). Lateral dynamics and associated transport of sediment in the upper reaches of a partially mixed estuary, Chesapeake Bay, USA. Continental Shelf Research 27, 679-698. https://doi.org/10.1016/j.csr.2006.11.012
  9. Joyce, T.M. (1989). On In Situ "Calibration" of Shipboard ADCPs. J. Atmos. Oceanic Technol., 6, 169-172. https://doi.org/10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2
  10. Kjerfve, B. (1975). Velocity Averaging in Estuaries Characterized by a Large Tidal Range to Depth Ratio, Est. and Coast. Mar. Cci., 3, 311-323.
  11. Kreeke, J. van de. (1992). Residual flow in Naples Bay and irs effect on constituent concentration, constituent flux and residence time. Dynamics and exchanges in estuaries and the coastal zone (D. Prandle, Ed.), AGU, 117-133.
  12. Park, K., Oh, J.-H., Kim, H.-S. and Im, H.-H. (2002). Case Study: Mass Transport Mechanism in Kyunggi Bay around Han River Mouth, Korea. Journal of Hydraulic engineering, 257-267.
  13. Lwiza, K. M. M., Bowers, D. G. and Simpson, J. H. (1991). Residual and tidal flow at a tidal mixing front in the North Sea, Continental Shelf Research., 11(11), 1379-1395. https://doi.org/10.1016/0278-4343(91)90041-4
  14. Mario Caceres and Valle-Levinson, A. (2003). Observations of cross-channel structure of flow in an energetic tidal channel, Journal of geophysical Research, vol. 108, 11-1 11-10.
  15. Mario Caceres (2002). Transverse variability of flow and density in a Chilean fjord, Continental Shelf Research 22, 1683-1698. https://doi.org/10.1016/S0278-4343(02)00032-8
  16. Preisendorfer, R. W. and Mobley, C. D. (1988). Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425.
  17. Sylaios, G. and Boxall, S. R. (1988). Residual currents and flux estimates in a partially mixed estuary, Continental Shelf Research., 46, 671-682.
  18. Valle-Levinson, A. (1999). Spatial Gradients in the Flow Over an Estuarine Channel. Estuaries, 22, 179-193. https://doi.org/10.2307/1352975
  19. Yanagi, T., Manabu, M., Nomuram M. and Furukawa, K. (2003). Spring-neap tidal variation of residual flow in Tokyo Bay, Japan. Continental Shelf Research, 23, 1087-1097. https://doi.org/10.1016/S0278-4343(03)00102-X
  20. Zimmerman, J.T.F. (1979). On the Euler-Lagrange Transformation and the Stokes drift in the Presence of Oscillatory and Residual currents. Deep-sea Res., 26A, 505-520.

Cited by

  1. Study on Lateral Flow Distribution and Momentum Analysis at Flood season and Neap tide of the Seokmo Channel in the Han River estuary vol.24, pp.6, 2012, https://doi.org/10.9765/KSCOE.2012.24.6.390
  2. Spatial and Temporal Variability of Residual Current and Salinity Distribution according to Freshwater Discharge during Monsoon in Nakdong River Estuary vol.26, pp.3, 2014, https://doi.org/10.9765/KSCOE.2014.26.3.184
  3. Spatial and Temporal Variability of Residual Current and Salinity according to Freshwater Discharge in Yeoungsan River Estuary vol.25, pp.2, 2013, https://doi.org/10.9765/KSCOE.2013.25.2.103
  4. Estimation of Net Flux of Water Mass and Tidal Prism at a Tidal Entrance through Bottom Tracking with ADCP vol.28, pp.3, 2016, https://doi.org/10.9765/KSCOE.2016.28.3.160
  5. Characteristics of Mass Transport Depending on the Feature of Tidal Creek at Han River Estuary, Gyeong-gi Bay, South Korea vol.25, pp.2, 2013, https://doi.org/10.9765/KSCOE.2013.25.2.41
  6. Study on Variability of Residual Current and Salinity Structure According to River Discharge at the Yeoungsan River Estuary, South Korea vol.116, 2015, https://doi.org/10.1016/j.proeng.2015.08.392
  7. The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel vol.29, pp.5, 2017, https://doi.org/10.9765/KSCOE.2017.29.5.217