References
- Akaike, H. (1974), A New Look at the Statistical Model Identification, IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705
- Barnett, V. and Lewis, T. (1994), Outliers in Statistical Data, Wiley and Sons, USA.
- Bergeret, F. and Gall, C. L. (2003), Yield Improvement Using Statistical Analysis of Process Data, IEEE Transactions on Semiconductor Manufacturing, 16(3), 535-542. https://doi.org/10.1109/TSM.2003.815204
- Besnard, J. and Toprac, A. (2006), Wafer-to-Wafer Virtual Metrology Applied to Run-to-Run Control, Proc. of the Third ISMI Symposium on Manufacturing Effectiveness.
- Chang, Y.-J., Kang, Y., Hsu, C.-L., Chang, C.-T., and Chan, T. Y. (2006), Virtual Metrology Technique for Semiconductor Manufacturing, Proc. Int. Joint Conf. on Neural Network(IJCNN 2006), 5289-5293.
- Chen, P., Wu, S., Lin, J., Ko, F., Lo, H., and Wang, J. (2005), Virtual Metrology : A Solution for Wafer to Wafer Advanced Process Control, Proc. IEEE Int. Symp. on Semiconductor Manufacturing (ISSM 2005), 155-157.
- Chen, Y.-T., Yang, H.-C., and Cheng, F.-T. (2006), Multivariate Simulation Assessment for Virtual Metrology, Proc. IEEE Int. Conf. on Robotics and Automation(ICRA 2006), 1048-1053.
- Kang, P. and Cho, S. (2008), A Hybrid Novelty Score and Its Use in Keystroke Dynamics-based User Authentication, Pattern Recognition, 42(11), 3115-3127.
- Kang, P., Kim, D., Lee, H.-J., Doh, S., and Cho, S. (2011), Virtual Metrology for Run-to-Run Control in Semiconductor Manufacturing, Expert Systems with Applications, 38(3), 2508-2522. https://doi.org/10.1016/j.eswa.2010.08.040
- Khan, A. A., Moyne, J. R., and Tilbury, D. M. (2007), An Approach for Factory-wide Control Utilizing Virtual Metrology, IEEE Transactions on Semiconductor Manufacturing, 20(4), 364-375. https://doi.org/10.1109/TSM.2007.907609
- Lee, H.-J. (2007), Novelty Detection for Class Imbalance : LVQ-based Algorithm and Its Application to Security and CRM, Ph.D Thesis, Seoul National University, Republic of Korea.
- Lin, T.-H., Hung, M.-T., Lin, R.-C., and Cheng, F.-T. (2006), A Virtual Metrology Scheme for Predicting CVD Thickness in Semiconductor Manufacturing, Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 2006), 1054-1059.
- Lynn, S., Ringwood, J., and MacGearailt, N. (2010), Weighted Windowed PLS Models for Virtual Metrology of an Industrial Plasma Etch Process, Proc. IEEE Int. Conf. on Industrial Technology(ICIT 2010), 309-314.
- Pan, T.-H., sheng, B.-Q., Wong, D. S.-H., and Jang, S.-S. (2011), A Virtual Metrology System for Predicting End-of-Line Electrical Properties using a MANCOVA Model with Tools Clustering, IEEE Transactions on Industrial Informatics, 7(2), 187-195. https://doi.org/10.1109/TII.2010.2098416
- Qin, S. J., Cherry, G., Good, R., Wang, J., and Harrison, C. A. (2006), Semiconductor Manufacturing Process Control and Monitoring : A Fab-wide Framework, Journal of Process Control, 16(3), 179-191. https://doi.org/10.1016/j.jprocont.2005.06.002
- Sachs, E., Hu, A., and Ingolfsson, A. (1995), Run by Run Process Control : Combining SPC and Feedback Control, IEEE Transactions on Semiconductor Manufacturing, 8(1), 26-43. https://doi.org/10.1109/66.350755
- Schwarz, G. E. (1978), Estimating the Dimension of a Model, Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136
- Spanos, C. J., Guo, H.-F., Miller, A., and Levine-Parril, J. (1992), Real-Time Statistical Process Control Using Tool Data, IEEE Transactions on Semiconductor Manufacturing, 5(4), 308-318. https://doi.org/10.1109/66.175363
- Su, A.-J., Jeng, J.-C., Huang, H.-P., Yu, C.-C., Hung, S.-Y., and Chao, C.-K. (2007), Control Relevant Issues in Semiconductor Manufacturing : Overview with Some New Results, Control Engineering Practice, 15(10), 1268-1279. https://doi.org/10.1016/j.conengprac.2006.11.003
- Tax, D. M. J. (2001), One-class Classification, Ph.D. Thesis, Delft University of Technology, Netherlands.
- Yang, J. and Honavar, V. (1998), Feature Subset Selection Using a Genetic Algorithm, IEEE Intelligent Systems, 13(2), 44-49. https://doi.org/10.1109/5254.671091
Cited by
- A Novelty Detection Algorithm for Multiple Normal Classes : Application to TFT-LCD Processes vol.39, pp.2, 2013, https://doi.org/10.7232/JKIIE.2013.39.2.082
- A Prediction of Chip Quality using OPTICS (Ordering Points to Identify the Clustering Structure)-based Feature Extraction at the Cell Level vol.40, pp.3, 2014, https://doi.org/10.7232/JKIIE.2014.40.3.257