DOI QR코드

DOI QR Code

Effect of Adding POSS on the Polymerization and Thermal Properties of Polyacrylonitrile

POSS 부가가 폴리아크릴로니트릴 중합과 열적 성질에 미치는 영향

  • Kim, Mi-Hee (Department of Organic Materials & Fiber Engineering, Advanced Wind Power System Research Center, Chonbuk National University) ;
  • Ha, Yu-Mi (Department of Organic Materials & Fiber Engineering, Advanced Wind Power System Research Center, Chonbuk National University) ;
  • Kim, Min-A (Department of Organic Materials & Fiber Engineering, Advanced Wind Power System Research Center, Chonbuk National University) ;
  • Hassan, M. Shamshi (Department of Organic Materials & Fiber Engineering, Advanced Wind Power System Research Center, Chonbuk National University) ;
  • Gu, Ja-Lam (Nano Fusion Technology Research Group, Faculty of Textile Science and Technology, Shinshu University) ;
  • Kim, Hyun-Chel (Korean Institute for Knit Industry) ;
  • Khil, Myung-Seob (Department of Organic Materials & Fiber Engineering, Advanced Wind Power System Research Center, Chonbuk National University)
  • 김미희 (전북대학교 유기소재파이버공학과, 차세대풍력발전연구센터) ;
  • 하유미 (전북대학교 유기소재파이버공학과, 차세대풍력발전연구센터) ;
  • 김민아 (전북대학교 유기소재파이버공학과, 차세대풍력발전연구센터) ;
  • 핫산 말릭 삼시 (전북대학교 유기소재파이버공학과, 차세대풍력발전연구센터) ;
  • 구자람 (신슈대학교) ;
  • 김현철 (한국니트산업연구원) ;
  • 길명섭 (전북대학교 유기소재파이버공학과, 차세대풍력발전연구센터)
  • Received : 2012.11.07
  • Accepted : 2012.12.04
  • Published : 2012.12.31

Abstract

Polymers containing POSS(polyhedral oligomeric silsesquioxane) nanostructures show improved properties such as thermal stability, mechanical properties and oxidation resistance. Polyacrylonitrile(PAN) is one of the most widely used precursors for carbon fibers. However, PAN homopolymer has poor chemical, mechanical and thermal properties. A certain amount of suitable acidic comonomers is incorporated into PAN during polymerization for enhancing the solubility, the spinnability and especially, the thermo-oxidative stabilization. Among the acidic comonomers, IA(itaconic acid) is the preferably and the most widely used one because of the presence of two carboxyl group, which provides more opportunities for the carboxyl groups to interact with the nitrile groups during stabilization. In this work, we used Octa amic acid POSS having two carboxyl groups, to improve the properties of PAN copolymer. We investigated the effect of POSS addition during polymerization on the thermal properties of PAN copolymer. P(AN-IA)/POSS was prepared in dimethylsulfoxide (DMSO) by solution polymerization. Thin films of P(AN-IA)/POSS were prepared by spin coater using solution cast technique. The films were stabilized at different temperatures for various holding time. The structural evolution and the thermal properties of P(AN-IA)/POSS were studied by Fourier transform infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). From those results, the cyclization of nitrile groups was found to be initiated at lower temperature with increasing POSS contents and stabilization proceeded at more moderate pace in P(AN-IA)/POSS than PAN.

Keywords

References

  1. M. Coleman and G. Sivy, “Fourier Transform IR Studies of the Degradation of Polyacrylonitrile Copolymers”, Carbon, 1981, 19, 123-126. https://doi.org/10.1016/0008-6223(81)90118-4
  2. W. Watt and W. Johnson, “Mechanism of Oxidization of Polyacrylonitrile Fibres”, Nature, 1975, 257, 210-212. https://doi.org/10.1038/257210a0
  3. E. Fitzer, W. Frohs, and M. Heine, “Optimization of Stabilization and Carbonization Treatment of PAN Fibers and Structural Characterization of the Resulting Carbon Fibers”, Carbon, 1986, 24(4), 387-395. https://doi.org/10.1016/0008-6223(86)90257-5
  4. E. Fitzer and D. J. Muller, “The Influence of Oxygen oh the Chemical Reactions During Stabilization of PAN as Carbon Fiber Precursor”, Carbon, 1975, 13, 63-69. https://doi.org/10.1016/0008-6223(75)90259-6
  5. N. Grassie and R. McGuchan, “Pyrolysis of Polyacrylonitrile and Related Polymers - VI. Acrylonitrile Copolymers Containing Carboxylic Acid and Amide Structures”, Eur Polym J, 1972, 8, 257-269. https://doi.org/10.1016/0014-3057(72)90032-8
  6. O. Quyung, L. Cheng, H. Wang, and K. Li, “Mechanism and Kinetics of the Stabilization Reactons of Itaconic Acidmodfied Polyacrylonitrile”, Polym Degrad Stab, 2008, 93, 1415-1421. https://doi.org/10.1016/j.polymdegradstab.2008.05.021
  7. T. S. Haddad and J. D. Lichtenhan, "Hybrid Organicinorganic Thermoplastics : Styryl-based Polyhedral Oligomeric Silsesquioxane Polymers", Macromolecules, 1996, 29, 7302-7304. https://doi.org/10.1021/ma960609d
  8. A. Romo-Uribe, P. T. Mather, T. S. Haddad, and J. D. Lichtenhan, “Viscoelastic and Morphological Behavior of Hybrid Styryl-Based Polyhedral Oligomeric Silsesquioxane (POSS) Copolymers”, J Polym Sci: Part B: Polym Phys, 1998, 36, 1857-1872. https://doi.org/10.1002/(SICI)1099-0488(199808)36:11<1857::AID-POLB7>3.0.CO;2-N
  9. B. X. Fu, B. S. Hsiao, S. Pogola, and P. Stephens, “Structural Development During Deformation of Polyurethane Containing Polyhedral Oligomeric Silsesquioxanes (POSS) Molecules”, Polymer, 2001, 42, 599-611. https://doi.org/10.1016/S0032-3861(00)00389-X
  10. B. X. A. Lee and T. S. Haddad, “Styrene-Butadiene Styrene Triblock Copolymers Modified with Polyhedral Oligomeric Silsesquioxanes”, Marcomolecules, 2004, 37, 5211-5218. https://doi.org/10.1021/ma049753m
  11. G. Z. Li, L. Wang, H. Toghiani, T. L. Daulton, K. Koyama, and C. U. Pittman, Jr., “Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends”, Macromolecules, 2001, 35, 8686-8693.
  12. T. S. Haddnd and J. D. Lichtenhan, "Hybrid Organicinorganic Thermoplastics: Styryl-based Polyhedral Oligomeric Silsesquioxane Polymers", Macromolecules, 1996, 29, 7302-7304. https://doi.org/10.1021/ma960609d
  13. H. X. Zhang, H. Y. Lee, Y. J. Shin, D. H. Lee, and S. K. Noh, “Effect of 3rd Monomer Addition on Styrene/Styryl- Polyhedral Oligomeric Silsesquioxane(POSS) Copolymerization”, Macromolecular Research, 2009, 17, 352-355. https://doi.org/10.1007/BF03218874
  14. Y. R. Liu, Y. D. Huang, and L. Liu, “Thermal Stability of POSS/Methylsilicon Nanocomposites”, Compos Sci Technol, 2007, 67, 2864-2876. https://doi.org/10.1016/j.compscitech.2007.01.023
  15. W. Zhang, X. Li, X. Guo, and R. Yang, "Mechanical and Thermal Properties and Flame Retardancy of Phosphoruscontaining Polyhedral Oligomeric Silsequioxane(DOPOPOSS)/ Poycarbonate Composite", Polym Degrad Stab, 2010, 1-6.
  16. B. Janowski and K. Pielichowski, “Thermo(oxidative) Stability of Novel Polyurethane/POSS Nanohybrid Elastomers”, Thermochimica Acta, 2008, 478, 51-53. https://doi.org/10.1016/j.tca.2008.08.015
  17. Y. Zhu, M. A. Wilding, and S. K. Mukhopadhyay, "Estimaton, Using Infrared Spectroscopy, of the Cyclization of Poly (Acrylonitrile) During the Stabilization Stage of Carbon Fibre Production", J Mater Sci, 1996, 31, 3831-3837. https://doi.org/10.1007/BF00352799
  18. R. Eslami Farsani, S. Raissi, A. Shokuhfar, and A. Sedghi, "FT-IR Study of Stabilized PAN Fibers for Fabrication of Carbon Fibers", World Academy of Science, Engeering and Technology, 2009, 50.
  19. Z. X. Xu, J. Xu, L. H. Xu, Y. Q. Dai, L. W. Xue, and R. G. Jin, "Kinetic Study of Cyclization of High-Tacticity Polyacrylonitrile Heat-Treated under Air Atmosphere via XRD", Polymer (Korea), 2008, 32, 150-156.
  20. J. S. Tsai and H. N. Hsu, “Determination of the Aromatization Index for Oxidized Polyacrylonitrile Fibre by the Differential Scanning Calormetry Method”, J Mater Sci Lett, 1992, 11, 1403-1405. https://doi.org/10.1007/BF00729641
  21. L. Zhang, Y. Dai, Y. Kai, and R. G. Jin, “Structural Evolution and Kinetic Study of High Isotacticity Poly(acrylonitrile) During Isothermal Pre-oxidation”, Carbon Lett, 2011, 12, 220-235.
  22. A. Fina, D. Tabuani, and F. Carniato, “Polyhedral Oligomeric Silsequioxanes (POSS) Thermal Degradation”, Thermochimica Acta, 2006, 440, 36-42. https://doi.org/10.1016/j.tca.2005.10.006

Cited by

  1. Hydrophilization of a Porous Polytetrafluoroethylene Supporter by Radiation Grafting Poly(Acrylonitrile-co-Sodium Allylsulfonate) vol.38, pp.3, 2014, https://doi.org/10.7317/pk.2014.38.3.293