DOI QR코드

DOI QR Code

지르코니아 나노섬유를 함유한 PAN계 탄소섬유의 제조 및 특성 분석

Preparation and Characterization of PAN Based Carbon Fibers Having Zirconia Nanofibers

  • 양지우 (충남대학교 유기소재.섬유시스템공학과) ;
  • 유재정 (충남대학교 유기소재.섬유시스템공학과) ;
  • 장혜진 (충남대학교 유기소재.섬유시스템공학과) ;
  • 용다경 (충남대학교 유기소재.섬유시스템공학과) ;
  • 원종성 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이승구 (충남대학교 유기소재.섬유시스템공학과)
  • Yang, Jee-Woo (BK21 FTIT, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Yoo, Jae Jung (BK21 FTIT, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Jang, Hae Jin (BK21 FTIT, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Yong, Da Kyung (BK21 FTIT, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Won, Jong Sung (BK21 FTIT, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Seung Goo (BK21 FTIT, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 투고 : 2012.09.01
  • 심사 : 2012.10.05
  • 발행 : 2012.10.31

초록

There has been steady needs for the PAN based carbon fibers, which have high thermal insulation properties and high mechanical properties. Thus, in this study, low thermal conductive PAN carbon fibers were prepared by using zirconia nanofibers, which were prepared from the electrospinning and sol-gel synthesis of zirconium oxide. Wet spun PAN fibers containing the zirconia nanofibers were stabilized and carbonized in order to prepare the composite carbon fibers. Based on the characterization results using scanning electron microscope (SEM), FT-IR, thermo-gravimetric analysis (TGA), and thermal conductivity measurement, the optimal conditions of composite carbon fibers were established. In addition, the thermal conductivity of prepared composite carbon fibers was reduced considerably by the effects of zirconia nanofiber inclusions.

키워드

과제정보

연구 과제 주관 기관 : 교육과학부

참고문헌

  1. J. B. Donnet, T. K. Wang, and C. M. Peng, "Carbon Fibers", 3rd ed., Marcel Dekker, 1998.
  2. P. Morgan, "Carbon Fibers and Their Composites", Taylor & Francis, CRC Press, 2005
  3. R. B. Mathur, O. P. Bahl, and J. A. Mittal, “New Approach to Thermal Stabilization of PAN Fibers”, Carbon, 1992, 30(4), 657-663. https://doi.org/10.1016/0008-6223(92)90185-Y
  4. M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, “A Review of Heat Treatment on Polyacrylonitrile Fiber”, Polym Degrad Stab, 2007, 92, 1421-1432. https://doi.org/10.1016/j.polymdegradstab.2007.03.023
  5. F. R. Barnett and M. K. Norr, "Proceeding of the International Confernce on Carbon Fibres, Their Composites and Applications", Plastics Institute, 1974, p.32.
  6. J. Doshi, G, Srincivasan, and D. Reneker, “Electrospinning Process and Application of Electrospun Fibers”, Polym News, 1995, 20, 206-207.
  7. O. A. Harizanov, "Formation and Crystallization of an Acetate-acetylacetonate Derived Sol-gel $BaTiO_{3}$, Mater Lett, 1998, 34, 345-350. https://doi.org/10.1016/S0167-577X(97)00199-7
  8. W. J. Parker, C. P. Jenkins, and C. P. Butter, "Flash Method of Determinning Thermal Diffusivity, Heat Capacity and Thermal Conductivity", J Appl Phys, 1961, 32, 1679-1684. https://doi.org/10.1063/1.1728417
  9. S. K. Kim and Y.-J. Kim, "Determination of Apparent Thickness of Graphite Coating in Flash Method", Thermochimica Acta, Elsevier, 2008, 486, 6-9.
  10. C. Shao, H. Guan, and Y. Liu, "A Novel Method for Making $ZrO_{2} $ Nanofibres Via an Electrospinning Technique", J Crystal Growth, 2004, 267, 380-384. https://doi.org/10.1016/j.jcrysgro.2004.03.065
  11. C. Wolf and C. Russel, "Sol-gel Formation of Zirconia: Preparation Structure and Rheology of Sols", J Mat Sci, 1992, 3749-3755.
  12. T. G. Ko and S. W. Han, "Photoluminescence and Fabrication of Zirconia Nanofibers from Electrospinning an Alkoxide Sol Templated on a Polyvinyl Butyral", J Korean Ceramic Soc, 2010, 47(4), 343-352. https://doi.org/10.4191/KCERS.2010.47.4.343
  13. D. W. Holcomb and R. A. Young, "Thermal Decomposition of Human Tooth Enamel", Calcif Tissue Int, 1980, 31, 189-201. https://doi.org/10.1007/BF02407181
  14. S. E. P. Dowker and J. C. Elliott, "Infrared Absorption Bands from $NOC^{-}$− and $NCN^{2-}$ in Heated Carbonate Containing Apatites Prepared in the Presence of $NH_{4}\;^{+}$ Ions", Calcif Tissue Int, 1979, 29, 177-178. https://doi.org/10.1007/BF02408075
  15. J. D. B. Featherstone, I. Mayer, F. C. M. Driessens, R. M. H. Verbeeck, and H. J. M. Heijligers, "Synthetic Apatites Containing Na, Mg, and $CO_{3}$ and Their Comparison with Tooth Enamel Mineral", Calcif Tissue Int, 1983, 35, 169-171. https://doi.org/10.1007/BF02405026
  16. E. Leoy, "Fabrication of Zirconia Fibers from Sol-Gels", John-Wiley & Sons, 1984.
  17. A. Gupta and I. R. Harrison, “New Aspects in the Oxidative Stabilization of PAN-based Carbon Fibers”, Carbon, 1996, 34, 1427-1445. https://doi.org/10.1016/S0008-6223(96)00094-2
  18. B. G. Min and S. Kumar, “Oxidative Stabilization of PAN/ SWNT Composite Fiber”, Carbon, 2005, 43, 599-604. https://doi.org/10.1016/j.carbon.2004.10.034
  19. E. Fitzer, W. Frohs, and M. Heine, “Optimization of Stabilization and Carbonization of PAN Fibers and Structural Characterization of the Resulting Carbon Fibers”, Carbon, 1986, 24, 387-395. https://doi.org/10.1016/0008-6223(86)90257-5
  20. J. W. Johnson, W. Potter, and P. G. Rose, “Stabilization of Polyacrylonitrile by Oxidative Transformation”, Brit Polym J, 1972, 4, 527-540. https://doi.org/10.1002/pi.4980040606
  21. A. R. Bunsell, "Fibre Reinforcements for Composite Materials", Amsterdam, Elsevier, 1988, p.203.
  22. S. Wang, R. Liang, B. Wang, and C. Zhang, “Dispersion and Thermal Conductivity of Carbon Nanotube Composites”, Carbon, 2009, 47, 53-57. https://doi.org/10.1016/j.carbon.2008.08.024
  23. S. K. Kim and Y. J. Kim, “Improvement of Specific Heat Measurement by the Flash Method”, Thermochimica Acta, 2007, 455, 30-33. https://doi.org/10.1016/j.tca.2006.11.028

피인용 문헌

  1. Preparation of PAN Spinning Solution with Fine Dispersion of Cellulose Microparticles vol.2015, 2015, https://doi.org/10.1155/2015/534241