DOI QR코드

DOI QR Code

실리카가 공유결합된 MWNT의 제조 및 전단농화유체에의 응용

Preparation of MWNTs Functionalized with Silica by Covalent Bonding and Their Application to Shear Thickening Fluids

  • 황혜나 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Hwang, Hye Na (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2012.09.05
  • 심사 : 2012.10.02
  • 발행 : 2012.10.31

초록

In order to increase the dispersibility of MWNT in silica/PEG shear thickening fluid (STF), silica-coated MWNTs (Si-MWNTs) through covalent bonding were prepared and characterized. Amino group-introduced MWNT with a nitrogen atom content of 20 wt% was prepared first by reacting acid-treated MWNT and ethylene diamine, and then various amounts of silica were formed on the surface of MWNT initiated from the amino groups by using a sol-gel method. The silica formation on the MWNT surface was confirmed by FE-SEM, TEM, EA, and FTIR spectroscopy. When 3 wt% of pristine MWNT was added to the silica/PEG suspension, the shear thickening property was not observed and the MWNT was not dispersed well in the suspension. On the other hand, the suspension containing 3 wt% of Si-MWNT showed similar shear thickening behavior to that of simple silica/PEG. The critical shear-thickening point of silica/Si-MWNT suspension in PEG moved to a lower shear rate with increasing Si-MWNT content.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Y. S. Lee, E. D. Wetzel, and N. J. Wagner, “The Ballistic Impact Characteristics of Kevlar Woven Fabrics Impregnated with a Colloidal Shear Thickening Fluid”, J Mater Sci, 2003, 38, 2825-2833. https://doi.org/10.1023/A:1024424200221
  2. M. J. Decker, C. J. Halbach, C. H. Nam, N. J. Wagner, and E. D Wetzel, "Stab Resistance of Shear Thickening Fluid (STF) - Treated Fabrics", Comp Sci Tech, 2007, 67, 565-578. https://doi.org/10.1016/j.compscitech.2006.08.007
  3. V. B. C. Tan, T. E. Tay, and W. K. Teo, “Strengthening Fabric Armour with Silica Colloidal Suspensions”, Int J Solids Struct, 2005, 42, 1561-1576. https://doi.org/10.1016/j.ijsolstr.2004.08.013
  4. H. A. Barnes, J. F. Hutton, and K. Walters, "An Introduction to Rheology", Elsevier, 1989, pp.115-139.
  5. Y. S. Lee and N. J. Wagner, “Dynamic Properties of Shear Thickening Colloidal Suspensions”, Rheol Acta, 2003, 42, 199-208.
  6. J. Bender and N. J. Wagner, “Reversible Shear Thickening in Monodisperse and Bidisperse Colloidal Dispersions”, J Rheol, 1995, 40, 899-916.
  7. M. K. Chow and C. F. Zukoski, “Nonequilibrium Behavior of Dense Suspensions of Uniform Particles : Volume Fraction and Size Dependence of Rheology and Microstructure”, J Rheol, 1995, 39, 33-59. https://doi.org/10.1122/1.550687
  8. B. J. Maranzano and N. J. Wagner, “Flow-Small Angle Neutron Scattering Measurements of Colloidal Dispersion Microstructure Evolution through the Shear Thickening Transition”, J Chem Phys, 2002, 117, 10291-10302. https://doi.org/10.1063/1.1519253
  9. J. W. Bender and N. J. Wagner, “Optical Measurement of the Contribution of Colloidal Forces to the Rheology of Concentrated Colloidal Dispersions”, J Colloid Interface Sci, 1995, 172, 171-184. https://doi.org/10.1006/jcis.1995.1240
  10. R. J. Hoffmann, “Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. II. Theory and Experimental Tests”, J Colloid Interface Sci, 1974, 46, 491-506. https://doi.org/10.1016/0021-9797(74)90059-9
  11. B. Kaffashi, V. T. O'Brien, M. E. Mackay, and S. M. Underwood, "Elastic-like and Viscous-like Components of the Shear Viscosity for Nearly Hard Sphere, Brownian Suspensions", J Colloid Interface Sci, 1997, 187, 22-28. https://doi.org/10.1006/jcis.1996.4611
  12. V. T. O'Brien and M. E. Mackay, “Stress Components and Shear Thickening of Concentrated Hard Sphere Suspensions”, Langmuir, 2000, 16, 7931-7938. https://doi.org/10.1021/la000050h
  13. R. S. Raghavan and S. A. Khan, “Shear-Thickening Response of Fumed Silica Suspensions under Steady and Oscillatory Shear”, J Colloid Interface Sci, 1997, 185, 57-67. https://doi.org/10.1006/jcis.1996.4581
  14. D. P. Kalman and N. J. Wagner, “Microstructure of Concentrated Suspensions Determined by Flow-USANS”, Rheol Acta, 2009, 48, 897-908. https://doi.org/10.1007/s00397-009-0351-2
  15. D. P. Kalman, R. L. Merrill, N. J. Wagner, and E. D. Wetzel, “Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle-Fluid Suspensions”, ACS Appl Mater Interfaces, 2009, 1, 2602-2612. https://doi.org/10.1021/am900516w
  16. S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature, 1991, 354, 56-58. https://doi.org/10.1038/354056a0
  17. M. Moniruzzaman and K. I. Winey, “Polymer Nanocomposites Containing Carbon Nanotubes”, Macromolecules, 2006, 39, 5194-5205. https://doi.org/10.1021/ma060733p
  18. T. Uchida and S. Kumar, “Single Wall Carbon Nanotube Dispersion and Exfoliation in Polymers”, J Appl Polym Sci, 2005, 98, 985-989. https://doi.org/10.1002/app.22203
  19. D. H. Walt, “Nanotubes and the Pursuit of Applications”, MRS Bull, 2004, 29, 281-285. https://doi.org/10.1557/mrs2004.81
  20. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, "Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin - Nanotube Composite", Science, 1994, 265, 1212-1214. https://doi.org/10.1126/science.265.5176.1212
  21. J. N. Coleman, U. Khan, and Y. K. Gun'ko, “Mechanical Reinforcement of Polymers Using Carbon Nanotubes”, Adv Mater, 2006, 18, 689-706. https://doi.org/10.1002/adma.200501851
  22. Y. Hou, J. Tang, H. Zhang, C. Qian, Y. Feng, and J. Liu, “Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites”, ACS Nano, 2009, 3, 1057-1062. https://doi.org/10.1021/nn9000512
  23. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of Carbon Nanotubes”, Chem Rev, 2006, 106, 1105-1136. https://doi.org/10.1021/cr050569o
  24. Y. Zhang, Y. Shen, D. Han, Z. Wang, J. Song, and L. Niu, “Reinforcement of Silica with Single-Walled Carbon Nanotubes through Covalent Functionalization”, J Mater Chem, 2006, 16, 4592-4597. https://doi.org/10.1039/b612317a
  25. M. Olek, K. Kempa, S. Jurga, and M. Giersig, “Nanomechanical Properties of Silica-Coated Multiwall Carbon Nanotubes - Poly(methyl methacrylate) Composites”, Langmuir, 2005, 21, 3146-3152. https://doi.org/10.1021/la0470784
  26. A. B. Bourlinos, V. Georgakilas, R. Zboril, and P. Dalls, “Preparation of a Water-Dispersible Carbon Nanotube-Silica Hybrid”, Carbon, 2007, 45, 2126-2139. https://doi.org/10.1016/j.carbon.2007.06.020
  27. Y. Lu, J. McLellan, and Y. Xia, “Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells”, Langmuir, 2004, 20, 3464-3470. https://doi.org/10.1021/la036245h
  28. T. Seeger, P. Redlich, N. Grobert, M. Terrones, D. R. M. Walton, H. W. Kroto, and M. Ruhle, "$SiO_{x}$-Coating of Carbon Nanotubes at Room Temperature", Chem Phys Lett, 2001, 339, 41-46. https://doi.org/10.1016/S0009-2614(01)00256-1
  29. M. Kim, J. Hong, J. Lee, C. K. Hong, and S. E. Shim, “Fabrication of Silica Nanotubes Using Silica Coated Multi- Walled Carbon Nanotubes as the Template”, J Colloid Interface Sci, 2008, 322, 321-326. https://doi.org/10.1016/j.jcis.2008.03.045
  30. X. Lo, Y. Liu, L. Fu, L. Cao, D. Wei, and Y. Wang, “Efficient Synthesis of Carbon Nanotube-Nanoparticle Hybrids”, Adv Funct Mater, 2006, 16, 2431-2437. https://doi.org/10.1002/adfm.200600339
  31. B. Pan, D. Cui, F. Gao, and R. He, “Growth of Multi-Amine Terminated Poly(amidoamine) Dendrimers on the Surface of Carbon Nanotube”, Nanotechnology, 2006, 17, 2483-2489. https://doi.org/10.1088/0957-4484/17/10/008
  32. X. Peng and S. S. Wong, “Controlling Nanocrystal Density and Location on Carbon Nanotube Templates”, Chem Mater, 2009, 21, 682-694. https://doi.org/10.1021/cm802648m
  33. Y. Gao and I. Kyratzis, “Covalent Immobilization of Proteins on Carbon Nanotubes Using the Cross-linker 1-Ethyl-3-(3- dimethylaminopropyl)carbodiimide - A Critical Assessment”, Bioconjugate Chem, 2008, 19, 1945-1950. https://doi.org/10.1021/bc800051c
  34. G. H. Bogush, M. A. Tracy, and C. F. Zukoskilv, “Preparation of Monodisperse Silica Particles : Control of Size and Mass Fraction”, J Non-Crystalline Solids, 1988, 104, 95-106. https://doi.org/10.1016/0022-3093(88)90187-1
  35. L. L. Hench and J. K. West, “The Sol-Gel Process”, Chem Rev, 1990, 90, 33-72. https://doi.org/10.1021/cr00099a003
  36. K. D. Kim and H. T. Kim, “Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch/Batch Method”, J Sol-Gel Sci Tech, 2002, 25, 183-189. https://doi.org/10.1023/A:1020217105290
  37. M. Zhang, Y. Wu, Z. Feng, X. He, L. Chen, and Y. Zhang, “Fabrication of Mesoporous Silica-Caoted CNTs and Application”, J Mater Chem, 2010, 20, 5835-5842. https://doi.org/10.1039/b925137e
  38. I. M. Krieger and T. J. Dougherty, “A Mechanism for Non- Newtonian Flow in Suspension of Rigid Spheres”, Trans Soc Rheol, 1952, 3, 137-152.
  39. R. S. Farr, J. R. Melrose, and R. C. Ball, “Kinetic Theory of Jamming in Hard-Sphere Startup Flows”, Phys Rev E, 1997, 55, 7203-7211. https://doi.org/10.1103/PhysRevE.55.7203