DOI QR코드

DOI QR Code

Effect on the Mechanical Properties and Water Vapor Permeability of Processing Parameters in the Electrospinning of Meta-aramid Nanofibers

Meta-aramid 나노섬유의 전기방사 공정인자들이 물성과 투습성에 미치는 영향

  • Park, Young Shin (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Nam, Young Sik (Goostech Co., Ltd.) ;
  • Lee, Min Sung (Huvis R&D Center) ;
  • Park, Won Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • Received : 2012.07.04
  • Accepted : 2012.08.05
  • Published : 2012.08.31

Abstract

Meta-aramid nanofibers were prepared by the electrospinning process. In this study, electrospun meta-aramid nanofiber webs were prepared with various velocity ratios of a collector drum, the fiber diameter and thickness of electrospun nanofiber webs, and then compared with values of tensile properties and breathable water-resistance. The meta-aramid nanofiber webs were analyzed by field-emission scanning electron microscopy, a tensile tester, water vapor permeability, an X-ray diffractometer and thermogravimetric analysis. The diameter of meta-aramid nanofibers ranging from 165 to 252 nm was obtained by electospinning. The tenacity, young's modulus and crystallinity of meta-aramid webs were decreased by increasing the diameter of meta-aramid nanofibers, however, water vapor permeability increased. It was confirmed that the breathable water-resistance of meta-aramid nanofiber webs were similar to that of chemical treated PTFE film.

Keywords

Acknowledgement

Supported by : 지식경제부, 중소기업청

References

  1. B. I. Park, “Current Trends and Perspective of the Korean Sportswear Industry”, Jounal of Sport and Leisure Studies, 2000, 14, 805-818.
  2. I. H. Chung, "Effect of Well-being Lifestyle and Functional Textile Knowledge on the Perception of High Functional Sports/Leisure Wear Importance", J Korean Soc Cloth Text, 2009, 33, 1495-1505. https://doi.org/10.5850/JKSCT.2009.33.9.1495
  3. D.-K. Kim, S.-D. Seul, and J.-E. Sohn, "Optimum Reaction Kinetics Model of Heat-resistant and Flame-Retardant Polymethyl Methacrylate", J Korea Inst Rubber Ind, 1987, 22, 324-332.
  4. H. H. Park and C. S. Lee, "Flame Retardance and Thermal Resistance of CPE Rubber Compound Containing a Phosphoric Ester Flame Retardant BDPDH", Elastomer, 2003, 38, 71-80.
  5. H. K. Koo, "Analysis of Behavior of Consumers in Babyboom Generation for Purchasing Fuctional Textile - Focused on Sportswear", Korea Science & Art Forum, 2011,
  6. A. Mukhopadhyay and V. K. Midha, “A Review on Designing the Breathable Waterproof Fabrics Part I: Fundamental Principles and Designing Aspects of Breathable Fabric”, J Ind Text, 2008, 37, 224-262.
  7. G. R. Lomax, "Breathable, Waterproof Fabrics Explained", Textiles, 1991, 20, 12-15.
  8. M. S. Kwon and J. Kwon, "A Study on the Dynamic Performance of Waterproof and Breathable Materials", Journal of the Korean Society of Costume, 2008, 58, 26-34.
  9. 김기정, "투습성 방수가공", 한국섬유공학회지, 1987, 24, 153-162.
  10. J. H. Yang, N.-S. Yoon, I. K. Kim, and J. H. Yeum, "Fabrication of Waterproof and Moisture-permeable Polyurethane Nanofiber Multi-Membrane", Textile Coloration and Finishing, 2011, 23, 107-117. https://doi.org/10.5764/TCF.2011.23.2.107
  11. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A Review on Polymer Nanofibers by Eletrospinning and Their Applications in Nanocomposites”, Compos Sci Technol, 2003, 63, 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  12. J. Doshi and D. H. Reneker, “Electrospinning Process and Applications of Electrospun Fibers”, Journal of Electrostatics, 1995, 35, 151-160. https://doi.org/10.1016/0304-3886(95)00041-8
  13. L. Yao, C. H. Lee, and J. Y. Kim, “Fabrication of Electrospun Meta-aramid Nanofibers in Dfferent Solvent Systems”, Fiber Polym, 2010, 11, 1032-1040. https://doi.org/10.1007/s12221-010-1032-6
  14. Z.-M. Huang, Y. Z. Zhang, S. Ramakrishna, and C. T. Lim, “Electrospinning and Mechanical Charaterization of Gelatin Nanofibers”, Polymer, 2004, 45, 5361-5368. https://doi.org/10.1016/j.polymer.2004.04.005
  15. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, "Charaterization of Nano-structured Poly(${\varepsilon}$-caprolactone) Nonwoven Mats Via Electrospinning", Polymer, 2003, 44, 1287-1294. https://doi.org/10.1016/S0032-3861(02)00820-0
  16. E. Zussman, M. Burman, A. L. Yarin, R. Khalfin, and Y. Cohen, "Tesile Deformation of Electrospun Nylon-6,6 Nanofibers", J Polym Sci, Polym Phys Ed, 2006, 44, 1482- 1489. https://doi.org/10.1002/polb.20803
  17. S.-C. Wong, A. Baji, and S. Leng, “Effect of Fiber Diameter on Tensile Properties of Electrospun”, Polymer, 2008, 49, 4713-4722. https://doi.org/10.1016/j.polymer.2008.08.022
  18. J. T. Koberstein and R. S. Stein, "Small-angle X-ray Scattering Measurements of Diffuse Phase-boundary Thicknesses in Segmented Polyurethane Elastomers", J Polym Sci, Polym Phys Ed, 1983, 23, 2181-2200.
  19. G. L. Clark, "The Encyclopedia of X-rays and Gamma rays", Reinhold, New York, 1963, pp.785-802.
  20. S. Sell, C. Barnes, D. Simpson, and G. Bowlin, “Scaffold Permeability as a Means to Determine Fiber Diameter and Pore Size of Electrospun Fibrinogen”, J Biomed Mater Res A, 2008, 85A, 115-126. https://doi.org/10.1002/jbm.a.31556
  21. M. R. Bilad, P. Westbroek, and Ivo F. J. Vankelecom, “Assessment and Optimization of Electrospun Nanofibermembranes in a Membrane Bioreactor (MBR)”, J Membr Sci, 2011, 380, 181-191. https://doi.org/10.1016/j.memsci.2011.07.003