DOI QR코드

DOI QR Code

전기방사에 의한 Poly(L-lactide)/막대형 Hydroxyapatite 복합체 나노섬유의 제조

Electrospun Nanofibers of Poly(L-lactide)/Rod-like Hydroxyapatite Composites

  • 박두진 (인하대학교 고분자공학과) ;
  • 최영은 (인하대학교 고분자공학과) ;
  • 조세연 (인하대학교 고분자공학과) ;
  • 진형준 (인하대학교 고분자공학과)
  • Park, Doo Jin (Department of Polymer Science and Engineering, Inha University) ;
  • Choi, Youngeun (Department of Polymer Science and Engineering, Inha University) ;
  • Cho, Se Youn (Department of Polymer Science and Engineering, Inha University) ;
  • Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
  • 투고 : 2012.05.18
  • 심사 : 2012.07.04
  • 발행 : 2012.08.31

초록

Rod-like hydroxyapatites (HAs) were successfully fabricated with $CaCl_2$, $Na_2HPO_4$, and polyvinylpyrrolidone (PVP) as a stabilizer. FT-IR was used to identify rod-like HA and to observe the functional groups on the surface of HA. We conducted the turbiscan test to confirm the effects of the HA ratio on the dispersion stability in the chloroform/acetone mixture. A 3D scaffold for bone tissue regeneration was produced by electrospinning poly(L-lactide) (PLLA) with 2, 5, and 10 wt% of rod-like HAs. SEM, TEM, and XRD showed that rod-like HAs were well-embedded into the electrospun PLLA nanofibers and the mechanical properties of PLLA and PLLA/HA nanofibers were measured by UTM. Pure PLLA nanofibers had higher tensile strength than PLLA/HA nanofibers. Furthermore, 2 and 5 wt% of HAs-incorporated PLLA nanofibers showed increased Young's modulus compared to pure PLLA nanofibers because of the hardness of HA and the strong interaction between PLLA and HA by hydrogen bonds.

키워드

과제정보

연구 과제번호 : 고내열 생분해성 폴리에스테르계 섬유 및 제품개발

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. S.-A. Park, "Solid Freeform Fabrication for Tissue Engineered Scaffold", J Adv Eng Tech, 2010, 3, 121-126.
  2. W.-J. Li, J. A. Cooper Jr., R. L. Mauck, and R. S. Tuan, "Fabrication and Characterization of Six Electrospun Poly(${\alpha}$- hydroxy ester)-based Fibrous Scaffolds for Tissue Engineering Applications", Acta Biomater, 2006, 2, 377-385. https://doi.org/10.1016/j.actbio.2006.02.005
  3. C. Li, C. Vepari, H.-J. Jin, H. J. Kim, and D. L. Kaplan, "Electrospun Silk-BMP-2 Scaffolds for Bone Tissue Engineering", Biomaterials, 2006, 27, 3115-3124. https://doi.org/10.1016/j.biomaterials.2006.01.022
  4. K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y.-S. Seo, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, "Control of Degradation Rate and Hydrophilicity in Electrospun Non-woven Poly(d,llactide) Nanofiber Scaffolds for Biomedical Applications", Biomaterials, 2003, 24, 4977-4985. https://doi.org/10.1016/S0142-9612(03)00407-1
  5. S. D. McCullen, Y. Zhu, S. H. Bernacki, R. J. Narayan, B. Pourdeyhimi, R. E. Gorga, and E. G. Loboa, "Electrospun Composite Poly(L-lactic acid)/Tricalcium Phosphate Scaffolds Induce Proliferation and Osteogenic Differentiation of Human Adipose-derived Stem Cells", Biomed Mater, 2009, 4, 1-9.
  6. C. S. Ki, Y. H. Park, and H.-J. Jin, "Silk Protein as a Fascinating Biomedical Polymer: Structural Fundamentals and Applications", Macromol Res, 2009, 17, 935-942. https://doi.org/10.1007/BF03218639
  7. T. J. Sill and H. A. von Recum, "Electrospinning: Applications in Drug Delivery and Tissue Engineering", Biomaterials, 2008, 29, 1989-2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
  8. F. Sun, H. Zhou, and J. Lee, "Various Preparation Methods of Highly Porous Hydroxyapatite/Polymer Nanoscale Biocomposites for Bone Regeneration", Acta Biomater, 2011, 7, 3813-3828. https://doi.org/10.1016/j.actbio.2011.07.002
  9. Y. Zhang and J. Lu, "A Mild and Efficient Biomimetic Synthesis of Rodlike Hydroxyapatite Particles with a High Aspect Ratio Using Polyvinylpyrrolidone as Capping Agent", Cryst Growth Des, 2008, 8, 2101-2107. https://doi.org/10.1021/cg060880e
  10. S.-S. Kim, M. S. Park, O. Jeon, C. Y. Choi, and B.-S. Kim, "Poly(lactide-co-glycolide)/Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering", Biomaterials, 2006, 27, 1399- 1409. https://doi.org/10.1016/j.biomaterials.2005.08.016
  11. X. Deng, J. Hao, and C. Wang, "Preparation and Mechanical Properties of Nanocomposites of Poly(D,L-lactide) with Cadefecient Hydroxyapatite Nanocrystals", Biomaterials, 2001, 22, 2867-2873. https://doi.org/10.1016/S0142-9612(01)00031-X
  12. Y. E. Kirsh, N. A. Yanula, and K. K. Kalninsh, "Structural Transformations and Water Associate Interactions in Poly-Nvinylcaprolactam- water System", Eur Polym J, 1999, 35, 305-316. https://doi.org/10.1016/S0014-3057(98)00114-1
  13. H. R. Pant, M. P. Bajgaic, K. T. Nam, Y. A. Seo, D. R. Pandeyae, S. T. Hong, and H. Y. Kim, "Electrospun Nylon- 6 Spider-net Like Nanofiber Mat Containing $TiO_{2}$2 Nanoparticles: A Multifunctional Nanocomposite Textile Material", J Hazard Mater, 2011, 185, 124-130. https://doi.org/10.1016/j.jhazmat.2010.09.006
  14. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites", Comp Sci Tech, 2003, 63, 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  15. X. Yao, H. Yao, G. Li, and Y. Li, "Biomimetic Synthesis of Needle-like Nano-hydroxyapatite Templated by Doublehydrophilic Block Copolymer", J Mater Sci, 2010, 45, 1930- 1936. https://doi.org/10.1007/s10853-009-4182-4
  16. D. Liu, X. Yuan, and D. Bhattacharyya, "The Effects of Cellulose Nanowhiskers on Electrospun Poly(lactic acid) Nanofibres", J Mater Sci, 2012, 47, 3159-3165. https://doi.org/10.1007/s10853-011-6150-z
  17. R. K. Roeder, M. M. Sproul, and C. H. Turner, "Hydroxyapatite Whiskers Provide Improved Mechanical Properties in Reinforced Polymer Composites", J Biomed Mater Res A, 2003, 67A, 801-812. https://doi.org/10.1002/jbm.a.10140