DOI QR코드

DOI QR Code

Xanthan Gum Production from Hydrolyzed Rice Bran as a Carbon Source by Xanthomonas spp.

  • Demirci, Ahmet Sukru (Department of Food Engineering, Faculty of Agriculture, Namik Kemal University) ;
  • Arici, Muhammet (Department of Food Engineering, Faculty of Agriculture, Namik Kemal University) ;
  • Gumus, Tuncay (Department of Food Engineering, Faculty of Agriculture, Namik Kemal University)
  • Received : 2012.05.17
  • Accepted : 2012.09.03
  • Published : 2012.12.28

Abstract

The aim of this study was to utilize rice bran, the main waste product of paddy processing, in xanthan gum production by Xanthomonas campestris fermentation. Deffated rice bran was enzymatically hydrolyzed using cellulase, gluco-amylase, alpha-amylase and xylanase at various pHs and temperatures within 0-12 h. The highest sugar content reached at $35^{\circ}C$, pH 5.5 in 6 h with 41.66%. The enzymatic hydrolysate was used as the carbon source for xanthan gum production by X. campestris NRRL B-1459 and X. campestris pv. campestris. The highest productivities obtained were 21.87 and 17.10 g/L, respectively. Viscosity measurement for the obtained xanthan gums and commercial gum was carried out in gum solutions at various pHs and temperatures. The highest viscosity was reached with 1% gum solutions at $20^{\circ}C$ and pH 5.5 for all gums with viscosity values of 470, 131 and 138 mPa sec, respectively. This work has provided relevant scientific information about the use of rice bran, an abundant agroindustrial residue, to produce xanthan gum.

Keywords

References

  1. ABD El-Salam, M. H., M. A. Fadel, and H. A. Murad. 1994. Bioconversion of sugarcane molasses into xanthan gum. J. Biotechnol. 33: 103-106. https://doi.org/10.1016/0168-1656(94)90103-1
  2. Anonymous. 1999. SPSS for Windows, Statistical Program Package, (version 10.0).
  3. Ashtaputre, A. A. and A. K. Shah. 1995. Studies on a viscous, gel-forming exopolysaccharide from Sphingomonas paucimobilis GS1. Appl. Environ. Microbiol. 61: 1159-1162.
  4. Atkinson, B. and F. Mavituna. 1991. Biochemical engineering and biotechnology handbook. Basingstoke: Macmillan Publishers.
  5. Bilanovic, D., G. Shelef, and M. Gren. 1994. Xanthan fermentation of citrus waste. Bioresour. Technol. 48: 169-172. https://doi.org/10.1016/0960-8524(94)90205-4
  6. Daglloglu, O., M. Taþan, and S. Gundogdu. 1998. A research on fatty acid composition of imported and local rice brans, Baked Products Technology. 1: 22-28. (In Turkish).
  7. De Vuyst, L., J. Van Loo, and E. J. Vandamme. 1987. Twostep fermentation process for improved xanthan production by Xanthomonas campestris NRRL B-1459. J. Chem. Technol. Biotechnol. 39: 263-273.
  8. De Vuyst, L., and A. Vermeire. 1994. Use of industrial medium components for xanthan production by Xanthomonas campestris NRRL B-1459. Appl. Microbiol. Biotechnol. 42: 187-191.
  9. Dogan, M., A. Kayacier, and E. Ic. 2007. Rheological characteristics of some food hydrocolloids processed with gamma irradiation. Food Hydrocolloids 21: 392-396. https://doi.org/10.1016/j.foodhyd.2006.04.010
  10. Gao, M., M. Kaneko, M. Hirata, E. Toorisaka, and T. Hano. 2008. Utilization of rice bran as nutrient source for fermentative lactic acid production. Bioresour. Technol. 99: 3659- 3664. https://doi.org/10.1016/j.biortech.2007.07.025
  11. Garcia-Ochoa, F., V. E. Santos, and A. Alcon. 2004. Chemical structured kinetic model for the xanthan production. Enzyme Microb. Technol. 35: 284-292. https://doi.org/10.1016/j.enzmictec.2003.11.024
  12. Garcia-Ochoa, F., V. E. Santos, J. A. Casas, and E. Gomez. 2000. Xanthan gum: production, recovery and properties. Biotechnol. Adv. 18: 1-31.
  13. Kalogiannis, S., G. Lakovidou, M. Liakopoulou-Kyriakides, D. A. Kyriakidis, and G. N. Skaracis. 2003. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem. 39: 249-256. https://doi.org/10.1016/S0032-9592(03)00067-0
  14. Katzbauer, B. 1998. Properties and applications of xanthan gum. Polym. Degrad. Stabil. 59: 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8
  15. Kawahara, H. and H. Obata. 1998. Production of xanthan gum and ice-nucleating material from whey by Xanthomonas campestris pv. Translucens. Appl. Microbiol. Biotechnol. 49: 353-358. https://doi.org/10.1007/s002530051181
  16. Kennedy, J. F., P. Jones, S.A. Barker, and G. T. Banks. 1982. Factors affecting microbial growth and polysaccharide production during the fermentation of Xanthomonas campestris cultures. Enzyme Microb. Technol. 4: 39-43. https://doi.org/10.1016/0141-0229(82)90009-6
  17. Kongruang, S. 2005. Growth kinetics of xanthan production from uneconomical agricultural products with Xanthomonas campestris TISTR 1100. J. Appl. Sci. 4: 78-88.
  18. Lachke, A. 2004. Xanthan a versatile gum. Resonance. 9: 25-33.
  19. Letisse, F., P. Chevallereau, and J. L. Simon. 2001. Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources. Appl. Microbiol. Biotechnol. 55: 417-422. https://doi.org/10.1007/s002530000580
  20. Liakopoulou-Kyriakides, M., S. K. Psomas, and D. A. Kyriakidis. 1999. Xanthan gum production by Xanthomonas campestris w.t. fermentation from chestnut extract. Appl. Biochem. Biotechnol. 82: 175-183. https://doi.org/10.1385/ABAB:82:3:175
  21. Lopez, M., J. Moreno, and A. Ramos-Cormenzana. 2001. Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Wat. Res. 35: 1828-1830. https://doi.org/10.1016/S0043-1354(00)00430-9
  22. Molina, O., R. Fitzsimons, and N. Perotti. 1993. Effect of corn step liquor on xanthan production by Xanthomonas campestris. Biotechnol. Lett. 15: 495-498. https://doi.org/10.1007/BF00129325
  23. Moosavi, A. and A. Karbassi. 2010. Bioconversion of sugarbeet molasses into xanthan gum. Food Process. Pres. 34: 316-322. https://doi.org/10.1111/j.1745-4549.2009.00376.x
  24. Moreno, J., M. J. Lopez, C. Vargas-Garcia, and R. Vazquez. 1998. Use of agricultural wastes for xanthan production by Xanthomonas campestris. J. Ind. Microbiol. Biotechnol. 21: 242-246. https://doi.org/10.1038/sj.jim.2900582
  25. Navarrete, R. C. and S. N. Shah. 2001. New biopolymer for coiled tubing applications, pp. 1-10. 68487 In: Society of Petroleum Engineers., Richardson, TX, USA.
  26. Papoutsopoulou, S. V., L. V. Ekateriniadou, and D. A. Kyriakidis. 1994. Genetic construction of Xanthomonas campestris and xanthan gum production from whey. Biotechnol Lett. 16: 1235-1240.
  27. Rosalan, S. and R. England. 2006. Review of xanthan gum production from unmodified starches by Xantomonas campestris sp. Enzyme Microb. Technol. 39: 197-207. https://doi.org/10.1016/j.enzmictec.2005.10.019
  28. Roseiro, J. C., M. E. Esgalhado, M. T. Amaral-Callaco, and A. N. Emery. 1991. Medium development for xanthan production. Process Biochem. 27: 167-175.
  29. Rottova, I., G. Batessini, M. F. Silva, L. Lerin, D. Oliveira, F. F. Padilha, G. Toniazzo, A. Mossi, R. L. Cansian, M. D. Luccio, H. Treichel. 2009. Xanthan gum production and rheological behavior using different strains of Xanthomonas sp. Carbohyd. Polym. 77: 65-71. https://doi.org/10.1016/j.carbpol.2008.12.001
  30. Siso, M. I. G. 1996. The biotechnological utilization of cheese whey: a review. Bioresour. Technol. 57: 1-11. https://doi.org/10.1016/0960-8524(96)00036-3
  31. Stredansky, M. and E. Conti. 1999. Xanthan production by solid state fermentation. Process Biochem. 34: 581-587. https://doi.org/10.1016/S0032-9592(98)00131-9
  32. Sutherland, I. W. 1983. Extracellular polysaccharide, pp. 531-575. In: H. Dellweg (eds.), Biotechnology, Verlag Chemie, Weinheim.
  33. Tanaka, T., M. Hoshina, S. Tanabe, K. Sakai, S. Ohtsubo, and M. Taniguchi. 2006. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 97: 211-217. https://doi.org/10.1016/j.biortech.2005.02.025
  34. Taniguchi, M., M. Hoshina, S. Tanabe, Y. Higuchi, K. Sakai, S. Ohtsubo, K. Hoshino, and T. Tanaka. 2005. Production of L-lactic acid by simultaneous saccharification and fermentation using unsterilized defatted rice bran as a carbon source and nutrient components. Food Sci. Technol. Res. 11: 400-406 https://doi.org/10.3136/fstr.11.400
  35. Yang, S. T. and E. M. Silva. 1995. Novel products and new technologies for use of a familiar carbohydrate, milk lactose. J. Dairy Sci. 78: 2541-2562. https://doi.org/10.3168/jds.S0022-0302(95)76884-9
  36. Yaseen, E. L., T. J. Herald, F. M. Aramouni, and S. Alavi. 2005. Rheological properties of selected gum solutions. Food Res. Int. 38: 111-119. https://doi.org/10.1016/j.foodres.2004.01.013
  37. Yoo, S. D. and S. W. Harcum. 1999. Xanthan gum production from waste sugar beet pulp. Bioresour. Technol. 70: 105-109 https://doi.org/10.1016/S0960-8524(99)00013-9

Cited by

  1. Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas campestris vol.8, pp.7, 2012, https://doi.org/10.1007/s13205-018-1322-z
  2. Valorising Agro-industrial Wastes within the Circular Bioeconomy Concept: the Case of Defatted Rice Bran with Emphasis on Bioconversion Strategies vol.6, pp.2, 2020, https://doi.org/10.3390/fermentation6020042