DOI QR코드

DOI QR Code

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho (Graduate School and Department of Analytical Science and Technology, Chungnam National University) ;
  • Cho, Mi Young (Graduate School and Department of Analytical Science and Technology, Chungnam National University) ;
  • Hong, Ji Hyeon (Graduate School and Department of Analytical Science and Technology, Chungnam National University) ;
  • Poo, Haryoung (Viral Infectious Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology) ;
  • Sung, Moon-Hee (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul and BioLeaders Corporation) ;
  • Lim, Yong Taik (Graduate School and Department of Analytical Science and Technology, Chungnam National University)
  • Received : 2012.08.14
  • Accepted : 2012.08.21
  • Published : 2012.12.28

Abstract

We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

Keywords

Acknowledgement

Supported by : Chungnam National University

References

  1. Anderson, M. E. 1998. Glutathione: An overview of biosynthesis and modulation. Chem. Biol. Interact. 112: 1-14.
  2. Bae, K. H., H. Mok, and T. G. Park. 2008. Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials 29: 3376-3383. https://doi.org/10.1016/j.biomaterials.2008.04.035
  3. Bae, S. R., C. Park, J. C. Choi, H. Poo, C. J. Kim, and M. H. Sung. 2010. Effects of ultra high molecular weight polygamma-glutamic acid from Bacillus subtilis (Chungkookjang) on corneal wound healing. J. Microbiol. Biotechnol. 20: 803-808.
  4. Bernkop-Schnurch, A. 2005. Thiomers: A new generation of mucoadhesive polymers. Adv. Drug Deliver. Rev. 57: 1569-1582. https://doi.org/10.1016/j.addr.2005.07.002
  5. Bravo-Osuna, I., D. Teutonico, S. Arpicco, C. Vauthier, and G. Ponchel. 2007. Characterization of chitosan thiolation and application to thiol quantification onto nanoparticle surface. Int. J. Pharm. 340: 173-181. https://doi.org/10.1016/j.ijpharm.2007.03.019
  6. Cai, X. J., C. Y. Dong, H. Q. Dong, G. M. Wang, G. M. Pauletti, X. J. Pan, et al. 2012. Effective gene delivery using stimulus-responsive catiomer designed with redox-sensitive disulfide and acid-labile imine linkers. Biomacromolecules 13: 1024-1034. https://doi.org/10.1021/bm2017355
  7. Chang, D., J. Lei, H. R. Cui, N. Lu, Y. J. Sun, X. H. Zhang, C. Gao, H. Zheng, and Y. H. Yin. 2012. Disulfide cross-linked nanospheres from sodium alginate derivative for inflammatory bowel disease: Preparation, characterization, and in vitro drug release behavior. Carbohyd. Polym. 88: 663-669. https://doi.org/10.1016/j.carbpol.2012.01.020
  8. Chung, K. H., M. Y. Cho, M. H. Sung, H. Poo, and Y. T. Lim. 2011. Electrostatically assembled biocompatible polymer nanoparticles for MR/optical dual-modality imaging nanoprobes. Chem. Commun. 47: 8889-8891. https://doi.org/10.1039/c1cc11922b
  9. Chung, S. W., T. A. Hil-lal, and Y. Byun. 2012. Strategies for non-invasive delivery of biologics. J. Drug Target. 20: 481-501. https://doi.org/10.3109/1061186X.2012.693499
  10. Ferrari, M. 2005. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 5: 161-171. https://doi.org/10.1038/nrc1566
  11. Hombach, J., T. F. Palmberger, and A. Bernkop-Schnurch. 2009. Development and in vitro evaluation of a mucoadhesive vaginal delivery system for nystatin. J. Pharm. Sci. 98: 555-564. https://doi.org/10.1002/jps.21457
  12. Kim, E., Y. Jung, H. Choi, J. Yang, J. S. Suh, Y. M. Huh, K. Kim, and S. Haam. 2010. Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31: 4592-4599. https://doi.org/10.1016/j.biomaterials.2010.02.030
  13. Kim, H. M., H. Lee, K. S. Hong, M. Y. Cho, M. H. Sung, H. Poo, and Y. T. Lim. 2011. Synthesis and high performance of magnetofluorescent polyelectrolyte nanocomposites as mr/nearinfrared multimodal cellular imaging nanoprobes. ACS Nano 5: 8230-8240. https://doi.org/10.1021/nn202912b
  14. Kommareddy, S. and M. Amiji. 2005. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug. Chem. 16: 1423-1432. https://doi.org/10.1021/bc050146t
  15. Lee, D. E., H. Koo, I. C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon. 2012. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41: 2656-2672. https://doi.org/10.1039/c2cs15261d
  16. Lee, E. H., Y. Kamigaito, T. Tsujimoto, S. Seki, H. Uyama, S. Tagawa, and M. H. Sung. 2010. Preparation of poly(gammaglutamic acid) hydrogel/apatite composites and their application for scaffold of cell proliferation. Sen-I Gakkaishi 66: 104-111. https://doi.org/10.2115/fiber.66.104
  17. Lee, E. H., Y. Kamigaito, T. Tsujimoto, H. Uyama, and M. H. Sung. 2010. Synthesis of an amphiphilic poly(gamma-glutamic acid)-cholesterol conjugate and its application as an artificial chaperone. J. Microbiol. Biotechnol. 20: 1424-1429. https://doi.org/10.4014/jmb.1006.06004
  18. Lee, E. H., T. Tsujimoto, H. Uyama, M. H. Sung, K. Kim, and S. Kuramitsu. 2010. Enhancement of enzyme activity and stability by poly(gamma-glutamic acid). Polym. J. 42: 818-822. https://doi.org/10.1038/pj.2010.71
  19. Lee, E. H., H. Uyama, O. H. Kwon, and M. H. Sung. 2009. Fabrication of ultrafine fibers of poly(gamma-glutamic acid) and its derivative by electrospinning. Polym. Bull. 63: 735-742. https://doi.org/10.1007/s00289-009-0112-5
  20. Lim, Y. T., Y. W. Noh, J. N. Kwon, and B. H. Chung. 2009. Multifunctional perfluorocarbon nanoemulsions for F-19-based magnetic resonance and near-infrared optical imaging of dendritic cells. Chem. Commun. 45: 6952-6954.
  21. Lim, Y. T., S. M. Shim, Y. W. Noh, K. S. Lee, D. Y. Choi, H. Uyama, et al. 2011. Bioderived polyelectrolyte nanogels for robust antigen loading and vaccine adjuvant effects. Small 7: 3281-3286. https://doi.org/10.1002/smll.201101836
  22. McClements, D. J. 2012. Crystals and crystallization in oil-inwater emulsions: Implications for emulsion-based delivery systems. Adv. Colloid. Interfac. 174: 1-30.
  23. Mok, H., H. J. Kim, and T. G. Park. 2008. Dissolution of biomacromolecules in organic solvents by nano-complexing with poly(ethylene glycol). Int. J. Pharm. 356: 306-313. https://doi.org/10.1016/j.ijpharm.2008.01.033
  24. Mok, H. and T. G. Park. 2006. PEG-assisted DNA solubilization in organic solvents for preparing cytosol specifically degradable PEG/DNA nanogels. Bioconjug. Chem. 17: 1369-1372. https://doi.org/10.1021/bc060119i
  25. Noh, Y. W., H. S. Park, M. H. Sung, and Y. T. Lim. 2011. Enhancement of the photostability and retention time of indocyanine green in sentinel lymph node mapping by anionic polyelectrolytes. Biomaterials 32: 6551-6557. https://doi.org/10.1016/j.biomaterials.2011.05.039
  26. Oh, J. K., R. Drumright, D. J. Siegwart, and K. Matyjaszewski. 2008. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33: 448-477. https://doi.org/10.1016/j.progpolymsci.2008.01.002
  27. Park, H., J. Yang, J. Lee, S. Haam, I. H. Choi, and K. H. Yoo. 2009. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3: 2919-2926. https://doi.org/10.1021/nn900215k
  28. Park, H. S., J. E. Lee, M. Y. Cho, Y. W. Noh, M. H. Sung, H. Poo, K. S. Hong, and Y. T. Lim. 2011. pH-stimuli-responsive near-infrared optical imaging nanoprobe based on poly(gammaglutamic acid)/poly(beta-amino ester) nanoparticles. Nanotechnology 22: 465603. https://doi.org/10.1088/0957-4484/22/46/465603
  29. Park, J. H., J. C. Choi, M. H. Sung, J. H. Kang, and M. J. Chang. 2011. High molecular weight poly-gamma-glutamic acid regulates lipid metabolism in rats fed a high-fat diet and humans. J. Microbiol. Biotechnol. 21: 766-775. https://doi.org/10.4014/jmb.1104.04047
  30. Park, K., S. Lee, E. Kang, K. Kim, K. Choi, and I. C. Kwon. 2009. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv. Funct. Mater. 19: 1553-1566. https://doi.org/10.1002/adfm.200801655
  31. Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer. 2006. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18: 1345-1360. https://doi.org/10.1002/adma.200501612
  32. Poo, H., H. M. Pyo, T. Y. Lee, S. W. Yoon, J. S. Lee, C. J. Kim, et al. 2006. Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int. J. Cancer 119: 1702-1709. https://doi.org/10.1002/ijc.22035
  33. Sasaki, Y. and K. Akiyoshi. 2010. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem. Rec. 10: 366-376.
  34. Sasaki, Y. and K. Akiyoshi. 2012. Self-assembled nanogel engineering for advanced biomedical technology. Chem. Lett. 41: 202-208. https://doi.org/10.1246/cl.2012.202
  35. Seo, S. B., J. Yang, W. Hyung, E. J. Cho, T. I. Lee, Y. J. Song, et al. 2007. Novel multifunctional PHDCA/PEI nano-drug carriers for simultaneous magnetically targeted cancer therapy and diagnosis via magnetic resonance imaging. Nanotechnology 18: 475105. https://doi.org/10.1088/0957-4484/18/47/475105
  36. Sweat, F. W. and W. W. Epstein. 1967. Dimethyl sulfoxide oxidations. J. Organic Chem. 32: 835-838. https://doi.org/10.1021/jo01278a081
  37. Tsujimoto, T., J. Kimura, Y. Takeuchi, H. Uyama, C. Park, and M. H. Sung. 2010. Chelation of calcium ions by poly(gammaglutamic acid) from Bacillus subtilis (Chungkookjang). J. Microbiol. Biotechnol. 20: 1436-1439. https://doi.org/10.4014/jmb.1004.04043
  38. Verheul, R. J., S. van der Wal, and W. E. Hennink. 2010. Tailorable thiolated trimethyl chitosans for covalently stabilized nanoparticles. Biomacromolecules 11: 1965-1971. https://doi.org/10.1021/bm1002784
  39. Yang, J., J. Lee, J. Kang, K. Lee, J. S. Suh, H. G. Yoon, Y. M. Huh, and S. Haam. 2008. Hollow silica nanocontainers as drug delivery vehicles. Langmuir 24: 3417-3421. https://doi.org/10.1021/la701688t
  40. Yoo, H. S. and T. G. Park. 2001. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J. Control. Release 70: 63-70. https://doi.org/10.1016/S0168-3659(00)00340-0
  41. Yoo, H. S. and T. G. Park. 2004. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release 96: 273-283. https://doi.org/10.1016/j.jconrel.2004.02.003
  42. Zhao, M. X., A. Biswas, B. L. Hu, K. I. Joo, P. Wang, Z. Gu, and Y. Tang. 2011. Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials 32: 5223-5230. https://doi.org/10.1016/j.biomaterials.2011.03.060
  43. Zhao, P. X. and D. Astruc. 2012. Docetaxel nanotechnology in anticancer therapy. Chem. Med. Chem. 7: 952-972.

Cited by

  1. pH‐ and Redox‐Responsive Poly(ethylene glycol) and Cholesterol‐Conjugated Poly(amido amine)s Based Micelles for Controlled Drug Delivery vol.14, pp.3, 2014, https://doi.org/10.1002/mabi.201300339
  2. Dual-Layered Nanogel-Coated Hollow Lipid/Polypeptide Conjugate Assemblies for Potential pH-Triggered Intracellular Drug Release vol.9, pp.3, 2012, https://doi.org/10.1371/journal.pone.0092268
  3. Polymer-Based Prodrugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy vol.20, pp.12, 2012, https://doi.org/10.3390/molecules201219804
  4. Meta-analysis of In Vitro Drug-Release Parameters Reveals Predictable and Robust Kinetics for Redox-Responsive Drug-Conjugated Therapeutic Nanogels vol.4, pp.5, 2021, https://doi.org/10.1021/acsanm.1c00170