DOI QR코드

DOI QR Code

Factors Affecting Adhesion of Lactic Acid Bacteria to Caco-2 Cells and Inhibitory Effect on Infection of Salmonella Typhimurium

  • Lim, Sung-Mee (Department of Food Nutrition and Science, Tongmyong University) ;
  • Ahn, Dong-Hyun (Department of Food Science and Technology, Pukyong National University)
  • Received : 2012.08.22
  • Accepted : 2012.09.06
  • Published : 2012.12.28

Abstract

In this study, seven strains isolated from mustard leaf kimchi were screened for their tolerance to simulated gastric and bile juices, the adhesive properties to Caco-2 cells, and the inhibition ability of Salmonella Typhimurium ATCC 29631 adhesion. Lactobacillus acidophilus GK20, Lactobacillus paracasei GK74, and Lactobacillus plantarum GK81, which were resistant to bile as well as gastric juices, possessed high bile-salt hydrolase (BSH) activity towards both sodium glycocholate and sodium taurocholate. The strongest in vitro adherence of $53.96{\pm}4.49%$ was exhibited by L. plantarum GK81 followed by L. acidophilus GK20 with adhesion levels of $40.72{\pm}9.46%$. The adhesion of these strains was significantly (p < 0.05) reduced after exposure to pepsin and heating for 30 min at $80^{\circ}C$. Addition of $Ca^{2+}$ led to a significant (p < 0.05) increase of the adhesion of L. acidophilus GK20, but the adhesion ability of L. plantarum GK81 was not different from the control by the addition of calcium. In the competition and exclusion experiment, the adhesion inhibition of S. Typhimurium by L. plantarum GK81 strain was much higher than the other strains. Moreover, the exclusion inhibition of S. Typhimurium by L. acidophilus GK20 was considerably high, although the inhibition activity of this strain was lower than L. plantarum GK81.

Keywords

References

  1. Baptissart, M., A. Vega, S. Maqdasy, F. Caira, S. Baron, J. A. Lobaccaro, and D. H. Volle. 2012. Bile acids: From digestion to cancers. Biochimie 94: 1-14. https://doi.org/10.1016/S0300-9084(11)00458-5
  2. Begley, M., C. Hill, and C. G. M. Gahan. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  3. Bernet, M. F., D. Brassart, J. R. Neeser, and A. L. Servin. 1994. Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35: 483-489. https://doi.org/10.1136/gut.35.4.483
  4. Chauviere, G., M. H. Coconnier, S. Kerneis, J. Fourniat, and A. L. Servin. 1992. Adhesion of Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells. J. Gen. Microbiol. 138: 1689-1696. https://doi.org/10.1099/00221287-138-8-1689
  5. Chen, X., J. Xu, J. Shuai, J. Chen, Z. Zhang, and W. Fang. 2007. The S-layer proteins of Lactobacillus crispatus strains ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella Typhimurium. Int. J. Food Microbiol. 115: 307-312. https://doi.org/10.1016/j.ijfoodmicro.2006.11.007
  6. De Smet, I., L. Van Hoorde, M. Vande Woestyne, H. Christiaens, and W. Verstrate. 1995. Significance of bile salt hydrolytic activities of lactobacilli. J. Appl. Bacteriol. 79: 292-301. https://doi.org/10.1111/j.1365-2672.1995.tb03140.x
  7. Forestier, C., C. De Champs, C. Vatoux, and B. Jolie. 2000. Probiotic activities of Lactobacillus casei rhamnosus: In vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152: 167-173.
  8. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  9. Granato, D., F. Perotti, I. Masserey, M. Rouvet, M. Golliard, A. Servin, and D. Brassart. 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 35: 1071-1077.
  10. Greene, J. D. and T. R. Klaenhammer. 1994. Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60: 4487-4494.
  11. Gueimonde, M., L. Jalonen, F. He, M. Hiramatus, and S. Salminen. 2006. Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Res. Int. 39: 467-471. https://doi.org/10.1016/j.foodres.2005.10.003
  12. Jensen, H., S. Grimmer, K. Naterstad, and L. Axelsson. 2012. In vitro testing of commercial and potential probiotic lactic acid bacteria. Int. J. Food Microbiol. 153: 216-222. https://doi.org/10.1016/j.ijfoodmicro.2011.11.020
  13. Kos, B., J. Suskovic, S. Vukovic, M. Simpraga, J. Frece, and S. Matosic. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94: 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
  14. Larsen, N., P. Nissen, and W. G. T. Willats. 2007. The effect of calcium ions on adhesion and competitive exclusion of Lactobacillus ssp. and E. coli O138. Int. J. Food Microbiol. 114: 113-119. https://doi.org/10.1016/j.ijfoodmicro.2006.10.033
  15. Li, G. 2012. Intestinal probiotics: Interactions with bile salts and reduction of cholesterol. Procedia Environ. Sci. 12: 1180-1186. https://doi.org/10.1016/j.proenv.2012.01.405
  16. Lim, S. M. 2010. Resistance to reactive oxygen species and antioxidant activities of some strains of lactic acid bacteria from the mustard leaf kimchi. Kor. J. Microbiol. 46: 375-382.
  17. Lim, S. M. 2011. Bile salts degradation and cholesterol assimilation ability of Pediococcus pentosaceus MLK isolated from mustard leaf kimchi. Kor. J. Microbiol. 47: 231-240.
  18. Lim, S. M. and D. S. Im. 2012. Inhibitory effects of antagonistic compounds produced from Lactobacillus brevis MLK27 on adhesion of Listeria monocytogenes KCTC 3569 to HT-29 cells. Food Sci. Biotechnol. 21: 775-784. https://doi.org/10.1007/s10068-012-0101-6
  19. Liong, M. T. and N. P. Shah. 2005. Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int. Dairy J. 15: 391-398. https://doi.org/10.1016/j.idairyj.2004.08.007
  20. Lorca, G. L. and G. F. de Valdez. 2001. A low-pH-inducible, stationary-phase acid tolerance response in Lactobacillus acidophilus CRL 639. Curr. Microbiol. 42: 21-25. https://doi.org/10.1007/s002840010172
  21. Morata, A. V. I., S. N. Gonzalez, and G. Oliver. 1999. Study of adhesion of Lactobacillus casei CRL 431 to ileal intestinal cells of mice. J. Food Prot. 62: 1430-1434.
  22. Oelschlaeger, T. A. 2010. Mechanisms of probiotic actions - A review. Int. J. Med. Microbiol. 300: 57-62. https://doi.org/10.1016/j.ijmm.2009.08.005
  23. Ouwehand, A. C., E. M. Tuomola, S. Tolkko, and S. Salminen. 2001. Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int. J. Food Microbiol. 64: 119-126. https://doi.org/10.1016/S0168-1605(00)00440-2
  24. Ouwehand, A. C., P. V. Kirjavainen, M. M. Gronlund, E. Isolauri, and S. J. Salminen. 1999. Adhesion of probiotic microorganisms to intestinal mucus. Int. Dairy J. 9: 623-630. https://doi.org/10.1016/S0958-6946(99)00132-6
  25. Patel, H. M., S. S. Pandiella, R. H. Wang, and C. Webb. 2004. Influence of malt, wheat, and barley extract on the bile tolerance of selected strains of lactobacilli. Food Microbiol. 21: 83-89. https://doi.org/10.1016/S0740-0020(03)00016-9
  26. Reid, G., A. L. Servin, A. W. Bruce, and H. J. Busscher. 1993. Adhesion of three Lactobacillus strains to human urinary and intestinal epithelial cells. Microbios 75: 57-65.
  27. Reid, G., J. Howard, and B. S. Gan. 2001. Can bacterial interference prevent infection? Trends Microbiol. 9: 424-428. https://doi.org/10.1016/S0966-842X(01)02132-1
  28. Saarel, M., G. Mogensen, R. Fonden, J. Matto, and T. Mattila-Sandholm. 2000. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84: 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  29. Schar-Zammaretti, P. and J. Ubbink. 2003. The cell wall of lactic acid bacteria: Surface constituents and macromolecular conformations. Biophys. J. 85: 4076-4092. https://doi.org/10.1016/S0006-3495(03)74820-6
  30. Schillinger, U., C. Guigas, and W. H. Holzapfel. 2005. In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int. Dairy J. 15: 1289-1297. https://doi.org/10.1016/j.idairyj.2004.12.008
  31. Servin, A. L. and M. H. Coconnier. 2003. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17: 741-754. https://doi.org/10.1016/S1521-6918(03)00052-0
  32. Sun, J., G. W. Le, Y. H. Shi, and G. W. Su. 2007. Factors involved in binding of Lactobacillus plantarum Lp6 to rat small intestinal mucus. Lett. Appl. Microbiol. 44: 79-85. https://doi.org/10.1111/j.1472-765X.2006.02031.x
  33. Tuomola, E. M., A. C. Ouwehand, and S. J. Salminen. 2000. Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. Int. J. Food Microbiol. 60: 75-81. https://doi.org/10.1016/S0168-1605(00)00319-6
  34. Tuomola, E., R. Crittenden, M. Playne, E. Isolauri, and S. Salminen. 2001. Quality assurance criteria for probiotic bacteria. Am. J. Clin. Nutr. 73: 393S-398S.
  35. Velez, M. P., S. C. De Keersmaecker, and J. Vanderleyden. 2007. Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol. Lett. 276: 140-148. https://doi.org/10.1111/j.1574-6968.2007.00908.x
  36. Vinderola, C. G. and J. A. Reinheimer. 2003. Lactic acid starter and probiotic bacteria: A comparative "in vitro" study of probiotic characteristics and biological barrier resistance. Food Res. Int. 36: 895-904. https://doi.org/10.1016/S0963-9969(03)00098-X
  37. Von Wright, A., T. Vilpponen-Salmela, M. P. Llopis, K. Collins, B. Kiely, F. Shanahan, and C. Dunne. 2002. The survival and colonic adhesion of Bifidobacterium infantis in patients with ulcerative colitis. Int. Dairy J. 12: 197-200. https://doi.org/10.1016/S0958-6946(01)00162-5
  38. Zarate, G., A. V. Morata, C. A. Perez, and S. Gonzalez. 2002. Some factors affecting the adherence of probiotic Propionibacterium acidipropionici CRL 1198 to intestinal epithelial cells. Can. J. Microbiol. 48: 449-457. https://doi.org/10.1139/w02-036

Cited by

  1. Antimutagenicity Activity of the Putative Probiotic Strain Lactobacillus paracasei subsp. tolerans JG22 Isolated from Pepper Leaves Jangajji vol.23, pp.1, 2014, https://doi.org/10.1007/s10068-014-0019-2
  2. Preliminary Evaluation of Probiotic Properties of Lactobacillus Strains Isolated from Sardinian Dairy Products vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/286390
  3. In vitro evaluation of the mucin‐adhesion ability and probiotic potential of Lactobacillus mucosae LM1 vol.117, pp.2, 2012, https://doi.org/10.1111/jam.12539
  4. Under what conditions is it possible to produce pigs without using antimicrobials? vol.55, pp.12, 2012, https://doi.org/10.1071/an15271
  5. Protective Effects of a Novel Probiotic Strain of Lactobacillus plantarum JSA22 from Traditional Fermented Soybean Food Against Infection by Salmonella enterica Serovar Typhimurium vol.25, pp.4, 2012, https://doi.org/10.4014/jmb.1501.01006
  6. Genomic and Functional Characterization of the Unusual pLOCK 0919 Plasmid Harboring the spaCBA Pili Cluster in Lactobacillus casei LOCK 0919 vol.8, pp.1, 2016, https://doi.org/10.1093/gbe/evv247
  7. Mechanisms and therapeutic effectiveness of lactobacilli vol.69, pp.3, 2012, https://doi.org/10.1136/jclinpath-2015-202976
  8. Adherence of probiotic bacteria to human colon epithelial cells and inhibitory effect against enteric pathogens – In vitro study vol.69, pp.4, 2016, https://doi.org/10.1111/1471-0307.12286
  9. Characterization and Application of Antilisterial Enterocins on Model Fresh Cheese vol.80, pp.8, 2012, https://doi.org/10.4315/0362-028x.jfp-17-031
  10. Synbiotic Effects of the Dietary Fiber Long‐Chain Inulin and Probiotic Lactobacillus acidophilus W37 Can be Caused by Direct, Synergistic Stimulation of Immune Toll‐Like Receptors and Dend vol.62, pp.15, 2018, https://doi.org/10.1002/mnfr.201800251
  11. Safety Evaluation and Colonisation Abilities of Four Lactic Acid Bacteria as Future Probiotics vol.11, pp.2, 2012, https://doi.org/10.1007/s12602-018-9430-y
  12. Comparative genomics and functional analysis of a highly adhesive dairy Lactobacillus paracasei subsp. paracasei IBB3423 strain vol.103, pp.18, 2019, https://doi.org/10.1007/s00253-019-10010-1
  13. Factors Relating to Adhesion and Aggregation of Lactobacillus paracasei and Lactobacillus rhamnosus Strains vol.90, pp.6, 2012, https://doi.org/10.1134/s0026261721060151