DOI QR코드

DOI QR Code

Structural Analysis of ${\alpha}$-L-Arabinofuranosidase from Thermotoga maritima Reveals Characteristics for Thermostability and Substrate Specificity

  • Dumbrepatil, Arti (Department of Food Science and Technology, Chungbuk National University) ;
  • Park, Jung-Mi (Department of Food Science and Technology, Chungbuk National University) ;
  • Jung, Tae Yang (Medical Proteomics Research Center, Korea Research Institute of Biosciences and Biotechnology) ;
  • Song, Hyung-Nam (Medical Proteomics Research Center, Korea Research Institute of Biosciences and Biotechnology) ;
  • Jang, Myoung-Uoon (Department of Food Science and Technology, Chungbuk National University) ;
  • Han, Nam Soo (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Tae-Jip (Department of Food Science and Technology, Chungbuk National University) ;
  • Woo, Eui Jeon (Medical Proteomics Research Center, Korea Research Institute of Biosciences and Biotechnology)
  • Received : 2012.08.20
  • Accepted : 2012.08.23
  • Published : 2012.12.28

Abstract

An ${\alpha}$-L-arabinofuranosidase (TmAFase) from Thermotoga maritima MSB8 is a highly thermostable exo-acting hemicellulase that exhibits a relatively higher activity towards arabinan and arabinoxylan, compared with other glycoside hydrolase 51 family enzymes. In the present study, we carried out the enzymatic characterization and structural analysis of TmAFase. Tight domain associations found in TmAFase, such as an inter-domain disulfide bond (Cys306 and Cys476) in each monomer, a novel extended arm (amino acids 374-385) at the dimer interface, and total 12 salt bridges in the hexamer, may account for the thermostability of the enzyme. One of the xylan binding determinants (Trp96) was identified in the active site, and a region of amino acids (374-385) protrudes out forming an obvious wall at the substrate-binding groove to generate a cavity. The altered cavity shape with a strong negative electrostatic distribution is likely related to the unique substrate preference of TmAFase towards branched polymeric substrates.

Keywords

References

  1. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: 233-238. https://doi.org/10.1093/nar/gkn663
  2. CCP4. 1994. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50: 760-763. https://doi.org/10.1107/S0907444994003112
  3. Davies, G. J., K. S. Wilson, and B. Henrissat. 1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321: 557-559.
  4. Emsley, P. and K. Cowtan. 2004. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
  5. Gilead, S. and Y. Shoham. 1995. Purification and characterization of ${\alpha}$-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 61: 170-174.
  6. Henrissat, B. and G. Davies. 1997. Structural and sequencebased classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
  7. Holm, L. and J. Park. 2000. Dali: Lite workbench for protein structure comparison. Bioinformatics 16: 566-567. https://doi.org/10.1093/bioinformatics/16.6.566
  8. Hovel, K., D. Shallom, K. Niefind, V. Belakhov, G. Shoham, T. Baasov, Y. Shoham, and D. Schomburg. 2003. Crystal structure and snapshots along the reaction pathway of a family 51 ${\alpha}$-Larabinofuranosidase. EMBO J. 22: 4922-4932. https://doi.org/10.1093/emboj/cdg494
  9. Im, D. H., K. Kimura, F. Hayasaka, T. Tanaka, M. Noguchi, A. Kobayashi, et al. 2012. Crystal structures of glycoside hydrolase family 51 ${\alpha}$-L-arabinofuranosidase from Thermotoga maritima. Biosci. Biotechnol. Biochem. 76: 423-428. https://doi.org/10.1271/bbb.110902
  10. Jones, T. A., J. Y. Zou, S. W. Cowan, and M. Kjeldgaard. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47: 110-119. https://doi.org/10.1107/S0108767390010224
  11. McCoy, A. J., R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, and R. J. Read. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40: 658-674. https://doi.org/10.1107/S0021889807021206
  12. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  13. Numan, M. T. and N. B. Bhosle. 2006. Alpha-L-arabinofuranosidases: The potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260. https://doi.org/10.1007/s10295-005-0072-1
  14. Paes, G., L. K. Skov, L. K. O'Donohue, C. Remond, L. K. Kastrup, M. Gajhede, and O. Mirza. 2008. The structure of the complex between a branched pentasaccharide and Thermobacillus xylanilyticus GH-51 arabinofuranosidase reveals xylan-binding determinants and induced fit. Biochemistry 47: 7441-7451. https://doi.org/10.1021/bi800424e
  15. Park, J. M., N. S. Han, and T. J. Kim. 2007. Rapid detection and isolation of known and putative alpha-L-arabinofuranosidase genes using degenerate PCR primers. J. Microbiol. Biotechnol. 17: 481-489.
  16. Rémond, C., R. Plantier-Royon, N. Aubry, E. Maes, C. Bliard, and M. J. O'Donohue. 2004. Synthesis of pentose-containing disaccharides using a thermostable alpha-L-arabinofuranosidase. Carbohydr. Res. 339: 2019-2025. https://doi.org/10.1016/j.carres.2004.04.017
  17. Saha, B. C. 2000. Alpha-L-arabinofuranosidases: Biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18: 403-423. https://doi.org/10.1016/S0734-9750(00)00044-6
  18. Shallom, D., V. Belakhov, D. Solomon, S. Gilead-Gropper, T. Baasov, G. Shoham, and Y. Shoham. 2002. The identification of the acid-base catalyst of alpha-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. FEBS Lett. 514: 163-167. https://doi.org/10.1016/S0014-5793(02)02343-8
  19. Shallom, D. and Y. Shoham. 2003. Microbial hemicellulases. Curr. Opin. Microbiol. 6: 219-228. https://doi.org/10.1016/S1369-5274(03)00056-0
  20. Shoseyov, O., Z. Shani, and I. Levy. 2006. Carbohydrate binding modules: Biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70: 283-295. https://doi.org/10.1128/MMBR.00028-05
  21. Souza, T. A., C. R. Santos, A. R. Souza, D. P. Oldiges, R. Ruller, R. A. Prade, et al. 2011. Structure of a novel thermostable GH51 ${\alpha}$-L-arabinofuranosidase from Thermotoga petrophila RKU-1. Protein Sci. 20: 1632-1637. https://doi.org/10.1002/pro.693
  22. Taylor, E. J., N. L. Smith, J. P. Turkenburg, S. D'Souza, H. J. Gilbert, and G. J. Davies. 2006. Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochem. J. 395: 31-37. https://doi.org/10.1042/BJ20051780
  23. Yoon, H. S., I. Keum, N. S. Han, and J. H. Kim. 2004. Molecular cloning and characterization of a gene encoding ${\alpha}$-Larabinofuranosidase from Thermotoga maritima. Food Sci. Biotechnol. 13: 244-247.

Cited by

  1. Cloning, Expression, and Characterization of a Thermostable GH51 ${\alpha}-\small{L}$-Arabinofuranosidase from Paenibacillus sp. DG-22 vol.24, pp.2, 2012, https://doi.org/10.4014/jmb.1308.08078
  2. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae vol.61, pp.9, 2012, https://doi.org/10.1139/cjm-2015-0073
  3. Constituent analysis and proteomic evaluation of ovular secretions in Ginkgo biloba: not just a pollination medium vol.13, pp.12, 2012, https://doi.org/10.1080/15592324.2018.1550316
  4. Screening of a Novel Glycoside Hydrolase Family 51 α-L-Arabinofuranosidase from Paenibacillus polymyxa KF-1: Cloning, Expression, and Characterization vol.8, pp.12, 2012, https://doi.org/10.3390/catal8120589
  5. Detailed Mode of Action of Arabinan-Debranching α-ʟ-Arabinofuranosidase GH51 from Bacillus velezensis vol.29, pp.1, 2012, https://doi.org/10.4014/jmb.1811.11035
  6. Characterisation of three novel α-L-arabinofuranosidases from a compost metagenome vol.19, pp.None, 2012, https://doi.org/10.1186/s12896-019-0510-1
  7. Thermophilic Degradation of Hemicellulose, a Critical Feedstock in the Production of Bioenergy and Other Value-Added Products vol.86, pp.7, 2012, https://doi.org/10.1128/aem.02296-19
  8. Arabinoxylo- and Arabino-Oligosaccharides-Specific α-ʟ-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera vol.31, pp.2, 2021, https://doi.org/10.4014/jmb.2012.12038