DOI QR코드

DOI QR Code

Identification of the ${\beta}$-Glucosidase Gene from Bifidobacterium animalis subsp. lactis and Its Expression in B. bifidum BGN4

  • Youn, So Youn (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Myeong Soo (Department of Hotel Culinary Arts, Yeonsung University) ;
  • Ji, Geun Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • Received : 2012.08.14
  • Accepted : 2012.09.09
  • Published : 2012.12.28

Abstract

${\beta}$-Glucosidase is necessary for the bioconversion of glycosidic phytochemicals in food. Two Bifidobacterium strains (Bifidobacterium animalis subsp. lactis SH5 and B. animalis subsp. lactis RD68) with relatively high ${\beta}$-glucosidase activities were selected among 46 lactic acid bacteria. A ${\beta}$-glucosidase gene (bbg572) from B. lactis was shotgun cloned, fully sequenced, and analyzed for its transcription start site, structural gene, and deduced transcriptional terminator. The structural gene of bbg572 was 1,383 bp. Based on amino sequence similarities, bbg572 was assigned to family 1 of the glycosyl hydrolases. To overexpress bbg572 in Bifidobacterium, several bifidobacteria expression vectors were constructed by combining several promoters and a terminator sequence from different bifidobacteria. The maximum activity of recombinant Bbg572 was achieved when it was expressed under its own promoter and terminator. Its enzyme activity increased 31-fold compared with those of its parental strains. The optimal pH for Bbg572 was pH 6.0. Bbg572 was stable at $37-40^{\circ}C$. It hydrolyzed isoflavones, quercetins, and disaccharides with various ${\beta}$-glucoside linkages. Bbg572 also converted the ginsenosides Rb1 and Rb2. These results suggest that this new ${\beta}$-glucosidase-positive Bifidobacterium transformant can be utilized for the production of specific aglycone products.

Keywords

References

  1. Aiba, H., A. Hanamura, and H. Yamano. 1991. Transcriptional terminator is a positive regulatory element in the expression of the Escherichia coli crp gene. J. Biol. Chem. 266: 1721-1727.
  2. Bhatia, Y., S. Mishra, and V. S. Bisaria. 2002. Microbial ${\beta}$- glucosidases: Cloning, properties and applications. Crit. Rev. Biotechnol. 22: 375-407. https://doi.org/10.1080/07388550290789568
  3. Brown, J. P. 1998. Hydrolysis of glycosides and esters. In: Role of the Gut Flora in Toxicity and Cancer. Academic Press, SanDiego.
  4. Chi, H. and G. E. Ji. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771. https://doi.org/10.1007/s10529-005-5632-y
  5. Choi, Y. O., J. M. Seo, and G. E. Ji. 2008. Modulatory activity of CpG oligonucleotides from Bifidobacterium longum on immune cells. Food Sci. Biotechnol. 17: 1131-1395.
  6. Collado-Vides, J., B. Magasanik, and J. D. Gralla. 1991. Control site location and transcriptional regulation in Escherichia coli. Microbiol. Rev. 55: 371-394.
  7. Esen, A. 1993. ${\beta}$-Glucosidase, pp. 1-13. In: ${\beta}$-Glucosidase: Biochemistry and Molecular Biology. American Chemical Society, Washington DC.
  8. Estrem, S. T., T. Gaal, W. Ross, and R. L. Gourse. 1998. Identification of an UP element consensus sequence for bacterial promoters. Proc. Natl. Acad. Sci. USA 95: 9761-9766. https://doi.org/10.1073/pnas.95.17.9761
  9. Gekas, V. and M. H. Lopez-Levia. 1985. Hydrolysis of lactose. Process Biochem. 20: 2-12.
  10. Ghosh, P., N. B. Pamment, and W. R. B. Martin. 1982. Simultaneous saccharification and fermentation of cellulose: Effect of beta-D-glucosidase activity and ethanol inhibition of cellulases. Enzyme Microb. Technol. 4: 425-430. https://doi.org/10.1016/0141-0229(82)90075-8
  11. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  12. Hawkswor, G., B. S. Drasar, and M. J. Hill. 1971. Intestinal bacteria and hydrolysis of glycosidic bonds. J. Med. Microbiol. 4: 451-459. https://doi.org/10.1099/00222615-4-4-451
  13. Helmann, J. D. 1995. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: Evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res. 23: 2351-2360. https://doi.org/10.1093/nar/23.13.2351
  14. Hendrich, S. 2002. Bioavailability of isoflavones. J. Chromatogr. B 777: 203-210. https://doi.org/10.1016/S1570-0232(02)00347-1
  15. Jensen, P. R. and K. Hammer. 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 82-87.
  16. Ji, G. E., S. K. Lee, and I. H. Kim. 1994. Improved selective medium for isolation and enumeration of Bifidobacterium sp. Korean J. Food Sci. Technol. 26: 526-531.
  17. Joint FAO/WHO Expert Consultation. 2001. Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.
  18. Kawakami, Y., W. Tsurugasaki, S. Nakamura, and K. Osada. 2005. Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J. Nutr. Biochem. 16: 205-212. https://doi.org/10.1016/j.jnutbio.2004.11.005
  19. Kenji, S., T. Takashi, K. Hidehiko, and T. Tatsurokuro. 1986. Isolation and characterization of two ${\beta}$-D-glucosidases from Bifidobacterium breve 203. Agric. Biol. Chem. 50: 2287-2293. https://doi.org/10.1271/bbb1961.50.2287
  20. Kim, J. Y., Y. Wang, M. S. Park, and G. E. Ji. 2010. Improvement of transformation efficiency through in vitro methylation and SacII site mutation of plasmid vector in Bifidobacterium longum MG1. J. Microbiol. Biotechnol. 20: 1022-1026. https://doi.org/10.4014/jmb.1003.03014
  21. Kim, J. Y., Y. Wang, S. J. Park, M. S. Park, and G. E. Ji. 2012. Cloning of expression of ${\beta}$-glucosidases from Bifidobacterium lactis AD011. Food Sci. Biotechnol. 21: 731-738. https://doi.org/10.1007/s10068-012-0095-0
  22. Le, T. M. and N. T. Vu. 2010. Cloning of a ${\beta}$-glucosidase gene (BGL1) from traditional starter yeast Saccharomycopsis fibuligera BMQ 908 and expression in Pichia pastoris. Int. J. Biol. Life Sci. 6: 83-87.
  23. Lei, V., W. K. Amoa-Awua, and L. Brimer. 1999. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int. J. Food Microbiol. 53: 169-184. https://doi.org/10.1016/S0168-1605(99)00156-7
  24. Mahlen, S. D. and J. E. Clarridge. 2009. Site and clinical significance of Alloscardovia omnicolens and Bifidobacterium species isolated in the clinical laboratory. J. Clin. Microbiol. 47: 3289-3293. https://doi.org/10.1128/JCM.00555-09
  25. Marotti, I., A. Bonetti, B. Biavati, P. Catizone, and G. Dinelli. 2007. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by Bifidobacterium species from human intestinal origin. J. Agric. Food Chem. 55: 3913-3919. https://doi.org/10.1021/jf062997g
  26. McCracken, A., M. S. Turner, P. Giffard, L. M. Hafner, and P. Timms. 2000. Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch. Microbiol. 173: 383-389. https://doi.org/10.1007/s002030000159
  27. Nunoura, N., K. Ohdan, K. Tanaka, H. Tamaki, T. Yano, M. Inui, et al. 1996. Cloning and nucleotide sequence of the beta-Dglucosidase gene from Bifidobacterium breve clb, and expression of beta-D-glucosidase activity in Escherichia coli. Biosci. Biotechnol. Biochem. 60: 2011-2018. https://doi.org/10.1271/bbb.60.2011
  28. Nunoura, N., K. Ohdan, T. Yano, K. Yamamoto, and H. Kumagai. 1996. Purification and characterization of beta-Dglucosidase (beta-D-fucosidase) from Bifidobacterium breve clb acclimated to cellobiose. Biosci. Biotechnol. Biochem. 60: 188-193. https://doi.org/10.1271/bbb.60.188
  29. Nunoura, N., K. Ohdan, K. Yamamoto, and H. Kumagai. 1997. Expression of the ${\beta}$-d-glucosidase I gene in Bifidobacterium breve 203 during acclimation to cellobiose. J. Ferment. Bioeng. 83: 309-314.
  30. Park, M. S., B. Kwon, J. J. Shim. C. S. Huh, and G. E. Ji. 2008. Heterologous expression of cholesterol oxidase in Bifidobacterium longum under the control of 16S rRNA gene promoter of bifidobacteria. Biotechnol. Lett. 30: 165-172.
  31. Park, M. S., J. M. Seo, and J. Y. Kim. 2005. Heterologous gene expression and secretion in Bifidobacterium longum. Lait 85: 1-8. https://doi.org/10.1051/lait:2004027
  32. Park, M. S., H. W. Moon, and G. E. Ji. 2003. Molecular characterization of plasmid from Bifidobacterium longum. J. Microbiol. Biotechnol. 13: 457-462.
  33. Sambrook, J., E. F. Frietsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  34. Setchell, K. D. R., N. M. Brown, L. Zimmer-Nechemias, W. T. Brashear, B. E. Wolfe, A. S. Kirschner, and J. E. Heubi. 2002. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 76: 447-453.
  35. Sneath, P. H. A., N. S. Mair, M. E. Sharpe, and J. G. Holt. 1986. Bergey's Manual of Systematic Bacteriology. The Williams & Wilkins Co.
  36. Ventura, M., F. Turroni, A. Zomer, E. Foroni, V. Giubellini, F. Bottacini, et al. 2009. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet. 5: e1000785. https://doi.org/10.1371/journal.pgen.1000785
  37. Wang, Y., J. Y. Kim, M. S. Park, and G. E. Ji. 2012. Novel Bifidobacterium promoters selected through microarray analysis lead to constitutive high level expression. J. Microbiol. 50: 638-643. https://doi.org/10.1007/s12275-012-1591-x
  38. Xu, X., K. S. Harris, H. J. Wang, P. A. Murphy, and S. Hendrich. 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 125: 2307-2315.

Cited by

  1. Soy isoflavones and their relationship with microflora: beneficial effects on human health in equol producers vol.12, pp.4, 2012, https://doi.org/10.1007/s11101-013-9329-x
  2. High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk vol.25, pp.4, 2012, https://doi.org/10.4014/jmb.1408.08013
  3. Finding and Producing Probiotic Glycosylases for the Biocatalysis of Ginsenosides: A Mini Review vol.21, pp.5, 2016, https://doi.org/10.3390/molecules21050645
  4. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007 vol.100, pp.1, 2012, https://doi.org/10.1016/j.foodres.2017.07.024
  5. Omics of bifidobacteria: research and insights into their health-promoting activities vol.474, pp.24, 2017, https://doi.org/10.1042/bcj20160756
  6. Comparative genomics and genotype-phenotype associations in Bifidobacterium breve vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-28919-4
  7. Enhancing Immunomodulatory Function of Red Ginseng Through Fermentation Using Bifidobacterium animalis Subsp. lactis LT 19-2 vol.11, pp.7, 2019, https://doi.org/10.3390/nu11071481
  8. Cloning and Heterologous Expression of the β-Galactosidase Gene from Bifidobacterium longum RD47 in B. bifidum BGN4 vol.29, pp.11, 2012, https://doi.org/10.4014/jmb.1905.05068
  9. In silico Approach to Elucidate Factors Associated with GH1 β-Glucosidase Thermostability vol.13, pp.4, 2012, https://doi.org/10.22207/jpam.13.4.07
  10. Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives vol.104, pp.9, 2012, https://doi.org/10.1007/s00253-020-10455-9
  11. Bifidobacterium β-Glucosidase Activity and Fermentation of Dietary Plant Glucosides Is Species and Strain Specific vol.8, pp.6, 2020, https://doi.org/10.3390/microorganisms8060839
  12. The Potential Role of Phytonutrients Flavonoids Influencing Gut Microbiota in the Prophylaxis and Treatment of Inflammatory Bowel Disease vol.8, pp.None, 2012, https://doi.org/10.3389/fnut.2021.798038
  13. Flavonoid-Modifying Capabilities of the Human Gut Microbiome-An In Silico Study vol.13, pp.8, 2012, https://doi.org/10.3390/nu13082688
  14. Production of biologically active human interleukin-10 by Bifidobacterium bifidum BGN4 vol.20, pp.1, 2012, https://doi.org/10.1186/s12934-020-01505-y