DOI QR코드

DOI QR Code

Effect of TSHAC on Human Cytochrome P450 Activity, and Transport Mediated by P-Glycoprotein

  • Im, Yelim (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Kim, Yang-Weon (Department of Emergency Medicine, Busan Paik Hospital, Inje University College of Medicine) ;
  • Song, Im-Sook (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Joo, Jeongmin (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Shin, Jung-Hoon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Wu, Zhexue (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Lee, Hye Suk (College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea) ;
  • Park, Ki Hun (Division of Applied Life Science, Gyeongsang National University) ;
  • Liu, Kwang-Hyeon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2012.09.06
  • Accepted : 2012.09.12
  • Published : 2012.12.28

Abstract

TSAHC [4'-(p-toluenesulfonylamido)-4-hydroxychalcone] is a promising antitumorigenic chalcone compound, especially against TM4SF5 (four-transmembrane L6 family member 5)-mediated hepatocarcinoma. We evaluated the potential of TSAHC to inhibit the catalytic activities of nine cytochrome P450 isoforms and of P-glycoprotein (P-gp). The abilities of TSAHC to inhibit phenacetin O-deethylation (CYP1A2), coumarin 6-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylation (CYP2C8), diclofenac 4-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation (CYP3A) were tested using human liver microsomes. The P-gp inhibitory effect of TSAHC was assessed by [$^3H$]digoxin accumulation in the LLCPK1-MDR1 cell system. TSAHC strongly inhibited CYP2C8, CYP2C9, and CYP2C19 isoform activities with $K_i$ values of 0.81, 0.076, and $3.45{\mu}M$, respectively. It also enhanced digoxin accumulation in a dose-dependent manner in the LLCPK1-MDR1 cells. These findings indicate that TSAHC has the potential to inhibit CYP2C isoforms and P-gp activities in vitro. TSAHC might be used as a nonspecific inhibitor of CYP2C isoforms based on its negligible inhibitory effect on other P450 isoforms such as CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, and CYP3A.

Keywords

References

  1. Ambudkar, S. V., C. Kimchi-Sarfaty, Z. E. Sauna, and M. M. Gottesman. 2003. P-glycoprotein: From genomics to mechanism. Oncogene 22: 7468-7485. https://doi.org/10.1038/sj.onc.1206948
  2. Corriu, C., M. Feletou, E. Canet, and P. M. Vanhoutte. 1996. Inhibitors of the cytochrome P450-mono-oxygenase and endothelium-dependent hyperpolarizations in the guinea-pig isolated carotid artery. Br. J. Pharmacol. 117: 607-610. https://doi.org/10.1111/j.1476-5381.1996.tb15233.x
  3. Dravid, P. V. and R. F. Frye. 2008. Determination of Ndesethylamodiaquine by hydrophilic interaction liquid chromatography with tandem mass spectrometry: Application to in vitro drug metabolism studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 863: 129-134. https://doi.org/10.1016/j.jchromb.2008.01.017
  4. Franklin, M. R. and L. B. Hathaway. 2008. 2-Diethylaminoethyl-2,2-diphenylvalerate-HCl (SKF525A) revisited: Comparative cytochrome P450 inhibition in human liver microsomes by SKF525A, its metabolites, and SKF-acid and SKF-alcohol. Drug Metab. Dispos. 36: 2539-2546. https://doi.org/10.1124/dmd.108.023549
  5. Gan, J., W. Chen, H. Shen, L. Gao, Y. Hong, Y. Tian, et al. 2010. Repaglinide-gemfibrozil drug interaction: Inhibition of repaglinide glucuronidation as a potential additional contributing mechanism. Br. J. Clin. Pharmacol. 70: 870-880. https://doi.org/10.1111/j.1365-2125.2010.03772.x
  6. Giacomini, K. M., S. M. Huang, D. J. Tweedie, L. Z. Benet, K. L. Brouwer, X. Chu, et al. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9: 215-236. https://doi.org/10.1038/nrd3028
  7. Guengerich, F. P. 1997. Role of cytochrome P450 enzymes in drug-drug interactions. Adv. Pharmacol. 43: 7-35.
  8. Han, H. K. 2011. Role of transporters in drug interactions. Arch. Pharm. Res. 34: 1865-1877. https://doi.org/10.1007/s12272-011-1107-y
  9. He, F., H. C. Bi, Z. Y. Xie, Z. Zuo, J. K. Li, X. Li, et al. 2007. Rapid determination of six metabolites from multiple cytochrome P450 probe substrates in human liver microsome by liquid chromatography/mass spectrometry: Application to high-throughput inhibition screening of terpenoids. Rapid Commun. Mass Spectrom. 21: 635-643. https://doi.org/10.1002/rcm.2881
  10. Ji, H. Y., K. H. Liu, H. Lee, S. R. Im, H. J. Shim, M. Son, et al. 2011. Corydaline inhibits multiple cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in human liver microsomes. Molecules 16: 6591-6602. https://doi.org/10.3390/molecules16086591
  11. Kaeser, B., H. Zandt, F. Bour, E. Zwanziger, C. Schmitt, and X. Zhang. 2009. Drug-drug interaction study of ketoconazole and ritonavir-boosted saquinavir. Antimicrob. Agents Chemother. 53: 609-614. https://doi.org/10.1128/AAC.00769-08
  12. Kim, M. J., H. Kim, I. J. Cha, J. S. Park, J. H. Shon, K. H. Liu, et al. 2005. High-throughput screening of inhibitory potential of nine cytochrome P450 enzymes in vitro using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19: 2651-2658. https://doi.org/10.1002/rcm.2110
  13. Lee, S. A., M. S. Lee, H. W. Ryu, T. K. Kwak, H. Kim, M. Kang, et al. 2011. Differential inhibition of transmembrane 4 L six family member 5 (TM4SF5)-mediated tumorigenesis by TSAHC and sorafenib. Cancer Biol. Ther. 11: 330-336. https://doi.org/10.4161/cbt.11.3.14099
  14. Lee, S. A., H. W. Ryu, Y. M. Kim, S. Choi, M. J. Lee, T. K. Kwak, et al. 2009. Blockade of four-transmembrane L6 family member 5 (TM4SF5)-mediated tumorigenicity in hepatocytes by a synthetic chalcone derivative. Hepatology 49: 1316-1325. https://doi.org/10.1002/hep.22777
  15. Lin, J. H. and M. Yamazaki. 2003. Role of P-glycoprotein in pharmacokinetics: Clinical implications. Clin. Pharmacokinet. 42: 59-98. https://doi.org/10.2165/00003088-200342010-00003
  16. Liow, J. S., S. Lu, J. A. McCarron, J. Hong, J. L. Musachio, V. W. Pike, et al. 2007. Effect of a P-glycoprotein inhibitor, Cyclosporin A, on the disposition in rodent brain and blood of the 5-HT1A receptor radioligand, [11C](R)-(-)-RWAY. Synapse 61: 96-105. https://doi.org/10.1002/syn.20348
  17. Liu, K. H., M. J. Kim, B. H. Jeon, J. H. Shon, I. J. Cha, K. H. Cho, et al. 2006. Inhibition of human cytochrome P450 isoforms and NADPH-CYP reductase in vitro by 15 herbal medicines, including Epimedii herba. J. Clin. Pharm. Ther. 31: 83-91. https://doi.org/10.1111/j.1365-2710.2006.00706.x
  18. Liu, K. H., M. J. Kim, J. H. Shon, Y. S. Moon, S. Y. Seol, W. Kang, et al. 2005. Stereoselective inhibition of cytochrome P450 forms by lansoprazole and omeprazole in vitro. Xenobiotica 35: 27-38. https://doi.org/10.1080/00498250400026472
  19. Markowitz, J. S. and C. L. Devine. 1997. Drug interaction potential of fluoxetine, sertraline, and paroxetine in four state psychiatric hospital populations. Ther. Drug Monit. 19: 244-245. https://doi.org/10.1097/00007691-199704000-00024
  20. Muzi, M., D. A. Mankoff, J. M. Link, S. Shoner, A. C. Collier, L. Sasongko, et al. 2009. Imaging of cyclosporine inhibition of P-glycoprotein activity using 11C-verapamil in the brain: Studies of healthy humans. J. Nucl. Med. 50: 1267-1275. https://doi.org/10.2967/jnumed.108.059162
  21. Nakamura, K., N. Ariyoshi, T. Iwatsubo, Y. Fukunaga, S. Higuchi, K. Itoh, et al. 2005. Inhibitory effects of nicardipine to cytochrome P450 (CYP) in human liver microsomes. Biol. Pharm. Bull. 28: 882-885. https://doi.org/10.1248/bpb.28.882
  22. Rieth, H. and N. Sauerbrey. 1989. [Interaction studies with fluconazole, a new triazole antifungal drug]. Wien. Med. Wochenschr. 139: 370-374.
  23. Seo, K. A., H. Kim, H. Y. Ku, H. J. Ahn, S. J. Park, S. K. Bae, et al. 2008. The monoterpenoids citral and geraniol are moderate inhibitors of CYP2B6 hydroxylase activity. Chem. Biol. Interact. 174: 141-146. https://doi.org/10.1016/j.cbi.2008.06.003
  24. Shin, J. G., J. Y. Park, M. J. Kim, J. H. Shon, Y. R. Yoon, I. J. Cha, et al. 2002. Inhibitory effects of tricyclic antidepressants (TCAs) on human cytochrome P450 enzymes in vitro: Mechanism of drug interaction between TCAs and phenytoin. Drug Metab. Dispos. 30: 1102-1107. https://doi.org/10.1124/dmd.30.10.1102
  25. Shin, J. G., N. Soukhova, and D. A. Flockhart. 1999. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: Preferential inhibition of CYP2D6. Drug Metab. Dispos. 27: 1078-1084.
  26. Srinivas, N. R. 2008. The drug-drug interaction potential of rifampicin. Clin. Ther. 30: 1932-1933. https://doi.org/10.1016/j.clinthera.2008.10.016
  27. Tachibana, T., M. Kato, J. Takano, and Y. Sugiyama. 2010. Predicting drug-drug interactions involving the inhibition of intestinal CYP3A4 and P-glycoprotein. Curr. Drug Metab. 11: 762-777. https://doi.org/10.2174/138920010794328922
  28. Yoon, Y. J. and K. H. Liu. 2011. Potential of hydroxyebastine and terfenadine alcohol to inhibit the human cytochrome P450 2J2 isoform. J. Korean Soc. Appl. Biol. Chem. 54: 659-666.
  29. Zvyaga, T., S. Y. Chang, C. Chen, Z. Yang, R. Vuppugalla, J. Hurley, et al. 2012. Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: Focus on cytochrome P450 2C19. Drug Metab. Dispos. 40: 1698-1711. https://doi.org/10.1124/dmd.112.045575

Cited by

  1. Effect of Natural Polyphenols on CYP Metabolism: Implications for Diseases vol.28, pp.7, 2015, https://doi.org/10.1021/acs.chemrestox.5b00121
  2. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions vol.68, pp.1, 2012, https://doi.org/10.1124/pr.115.011411