DOI QR코드

DOI QR Code

A Human Fungal Pathogen Cryptococcus neoformans Expresses Three Distinct Iron Permease Homologs

  • Han, Kyunghwan (Department of Biotechnology, Chung-Ang University) ;
  • Do, Eunsoo (Department of Biotechnology, Chung-Ang University) ;
  • Jung, Won Hee (Department of Biotechnology, Chung-Ang University)
  • Received : 2012.09.06
  • Accepted : 2012.09.11
  • Published : 2012.12.28

Abstract

Iron plays a key role in host-pathogen interactions. Microbial pathogens require iron for survival and virulence, whereas mammalian hosts sequester and withhold iron as a means of nutritional immunity. We previously identified two paralogous genes, CFT1 and CFT2, which encode homologs of a fungal iron permease, Cft1 and Cft2, respectively, in the human fungal pathogen Cryptococcus neoformans. Cft1 was shown to play a role in the high-affinity reductive iron uptake system, and was required for transferrin utilization and full virulence in mammalian hosts. However, no role of Cft2 has been suggested yet. Here, we identified the third gene, CFT3, that produces an additional fungal iron permease homolog in C. neoformans, and we also generated the cft3 mutant for functional characterization. We aimed to reveal distinct functions of Cft1, Cft2 and Cft3 by analyzing phenotypes of the mutants lacking CFT1, CFT2 and CFT3, respectively. The endogenous promoter of CFT1, CFT2 and CFT3 was replaced with the inducible GAL7 promoter in the wild-type strain or in the cft1 mutant for gain-of-function analysis. Using these strains, we were able to find that CFT2 is required for growth in low-iron conditions in the absence of CFT1 and that overexpression of CFT2 compensates for deficiency of the cft1 mutant in iron uptake and various cellular stress conditions. However, unlike CFT2, no clear phenotypic characteristic of the cft3 mutant and the strain overexpressing CFT3 was observed. Overall, our data suggested a redundant role of Cft2 in the high-affinity iron uptake and stress responses in C. neoformans.

Keywords

References

  1. Askwith, C., D. Eide, A. Van Ho, P. S. Bernard, L. Li, S. Davis-Kaplan, et al. 1994. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76: 403-410. https://doi.org/10.1016/0092-8674(94)90346-8
  2. Choi, J., A. W. Vogl, and J. W. Kronstad. 2012. Regulated expression of cyclic AMP-dependent protein kinase A reveals an influence on cell size and the secretion of virulence factors in Cryptococcus neoformans. Mol. Microbiol. 85: 700-715. https://doi.org/10.1111/j.1365-2958.2012.08134.x
  3. Dancis, A., D. S. Yuan, D. Haile, C. Askwith, D. Eide, C. Moehle, et al. 1994. Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell 76: 393-402. https://doi.org/10.1016/0092-8674(94)90345-X
  4. Davidson, R. C., J. R. Blankenship, P. R. Kraus, M. de Jesus Berrios, C. M. Hull, C. D'Souza, et al. 2002. A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148: 2607-2615.
  5. Hentze, M. W., M. U. Muckenthaler, and N. C. Andrews. 2004. Balancing acts: Molecular control of mammalian iron metabolism. Cell 117: 285-297. https://doi.org/10.1016/S0092-8674(04)00343-5
  6. Howard, D. H. 1999. Acquisition, transport, and storage of iron by pathogenic fungi. Clin. Microbiol. Rev. 12: 394-404.
  7. Ibrahim, A. S., J. E. Edwards Jr., Y. Fu, and B. Spellberg. 2006. Deferiprone iron chelation as a novel therapy for experimental mucormycosis. J. Antimicrob. Chemother. 58: 1070-1073. https://doi.org/10.1093/jac/dkl350
  8. Jacobson, E. S., A. P. Goodner, and K. J. Nyhus. 1998. Ferrous iron uptake in Cryptococcus neoformans. Infect. Immun. 66: 4169-4175.
  9. Jung, W. H., G. Hu, W. Kuo, and J. W. Kronstad. 2009. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot. Cell 8: 1511-1520. https://doi.org/10.1128/EC.00166-09
  10. Jung, W. H. and J. W. Kronstad. 2008. Iron and fungal pathogenesis: A case study with Cryptococcus neoformans Cell. Microbiol. 10: 277-284.
  11. Jung, W. H., S. Saikia, G. Hu, J. Wang, C. K. Fung, C. D'Souza, et al. 2010. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans. PLoS Pathog. 6: e1001209. https://doi.org/10.1371/journal.ppat.1001209
  12. Jung, W. H., A. Sham, T. Lian, A. Singh, D. J. Kosman, and J. W. Kronstad. 2008. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog. 4: e45. https://doi.org/10.1371/journal.ppat.0040045
  13. Jung, W. H., A. Sham, R. White, and J. W. Kronstad. 2006. Iron regulation of the major virulence factors in the AIDSassociated pathogen Cryptococcus neoformans. PLoS Biol. 4: e410. https://doi.org/10.1371/journal.pbio.0040410
  14. Kronstad, J., S. Saikia, E. D. Nielson, M. Kretschmer, W. Jung, G. Hu, et al. 2012. Adaptation of Cryptococcus neoformans to mammalian hosts: Integrated regulation of metabolism and virulence. Eukaryot. Cell 11: 109-118. https://doi.org/10.1128/EC.05273-11
  15. Kronstad, J. W., R. Attarian, B. Cadieux, J. Choi, C. A. D'Souza, E. J. Griffiths, et al. 2011. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat. Rev. Microbiol. 9: 193-203. https://doi.org/10.1038/nrmicro2522
  16. Levitz, S. M., S. H. Nong, K. F. Seetoo, T. S. Harrison, R. A. Speizer, and E. R. Simons. 1999. Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect. Immun. 67: 885-890.
  17. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  18. Nyhus, K. J., A. T. Wilborn, and E. S. Jacobson. 1997. Ferric iron reduction by Cryptococcus neoformans. Infect. Immun. 65: 434-438.
  19. Perfect, J. R., N. Ketabchi, G. M. Cox, C. W. Ingram, and C. L. Beiser. 1993. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J. Clin. Microbiol. 31: 3305-3309.
  20. Severance, S., S. Chakraborty, and D. J. Kosman. 2004. The Ftr1p iron permease in the yeast plasma membrane: Orientation, topology and structure-function relationships. Biochem. J. 380: 487-496. https://doi.org/10.1042/BJ20031921
  21. Stearman, R., D. S. Yuan, Y. Yamaguchi-Iwai, R. D. Klausner, and A. Dancis. 1996. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271: 1552-1557. https://doi.org/10.1126/science.271.5255.1552
  22. Tangen, K. L., W. H. Jung, A. P. Sham, T. Lian, and J. W. Kronstad. 2007. The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 153: 29-41. https://doi.org/10.1099/mic.0.2006/000927-0
  23. Wang, J. and K. Pantopoulos. 2011. Regulation of cellular iron metabolism. Biochem. J. 434: 365-381. https://doi.org/10.1042/BJ20101825
  24. Yu, J. H., Z. Hamari, K. H. Han, J. A. Seo, Y. Reyes-Dominguez, and C. Scazzocchio. 2004. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41: 973-981. https://doi.org/10.1016/j.fgb.2004.08.001

Cited by

  1. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis vol.5, pp.None, 2012, https://doi.org/10.3389/fpls.2014.00547
  2. Amino Acid Permeases and Virulence in Cryptococcus neoformans vol.11, pp.10, 2012, https://doi.org/10.1371/journal.pone.0163919
  3. Iron acquisition in fungal pathogens of humans vol.9, pp.3, 2012, https://doi.org/10.1039/c6mt00301j
  4. Metals in fungal virulence vol.42, pp.1, 2012, https://doi.org/10.1093/femsre/fux050
  5. Investigation of Cryptococcus neoformans magnesium transporters reveals important role of vacuolar magnesium transporter in regulating fungal virulence factors vol.7, pp.3, 2012, https://doi.org/10.1002/mbo3.564
  6. The cAMP/Protein Kinase A Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans vol.9, pp.None, 2012, https://doi.org/10.3389/fcimb.2019.00212
  7. The “Little Iron Waltz”: The Ternary Response of Paracoccidioides spp. to Iron Deprivation vol.6, pp.4, 2012, https://doi.org/10.3390/jof6040221