DOI QR코드

DOI QR Code

Clostridium difficile Toxin A Inhibits Erythropoietin Receptor-Mediated Colonocyte Focal Adhesion Through Inactivation of Janus Kinase-2

  • Nam, Seung Taek (Department of Life Science, College of Natural Science, Daejin University) ;
  • Seok, Heon (Department of Biomedical Science, Jungwon University) ;
  • Kim, Dae Hong (Department of Life Science, College of Natural Science, Daejin University) ;
  • Nam, Hyo Jung (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kang, Jin Ku (Department of Life Science, College of Natural Science, Daejin University) ;
  • Eom, Jang Hyun (Department of Life Science, College of Natural Science, Daejin University) ;
  • Lee, Min Bum (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kim, Sung Kuk (Department of Life Science, College of Natural Science, Daejin University) ;
  • Park, Mi Jung (Department of Life Science, College of Natural Science, Daejin University) ;
  • Chang, Jong Soo (Department of Life Science, College of Natural Science, Daejin University) ;
  • Ha, Eun-Mi (College of Pharmacy, Catholic University of Daegu) ;
  • Shong, Ko Eun (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Hwang, Jae Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, Ho (Department of Life Science, College of Natural Science, Daejin University)
  • Received : 2012.07.27
  • Accepted : 2012.08.01
  • Published : 2012.12.28

Abstract

Previously, we demonstrated that the erythropoietin receptor (EpoR) is present on fibroblasts, where it regulates focal contact. Here, we assessed whether this action of EpoR is involved in the reduced cell adhesion observed in colonocytes exposed to Clostridium difficile toxin A. EpoR was present and functionally active in cells of the human colonic epithelial cell line HT29 and epithelial cells of human colon tissues. Toxin A significantly decreased activating phosphorylations of EpoR and its downstream signaling molecules JAK-2 (Janus kinase 2) and STAT5 (signal transducer and activator of transcription 5). In vitro kinase assays confirmed that toxin A inhibited JAK 2 kinase activity. Pharmacological inhibition of JAK2 (with AG490) abrogated activating phosphorylations of EpoR and also decreased focal contacts in association with inactivation of paxillin, an essential focal adhesion molecule. In addition, AG490 treatment significantly decreased expression of occludin (a tight junction molecule) and tight junction levels. Taken together, these data suggest that inhibition of JAK2 by toxin A in colonocytes causes inactivation of EpoR, thereby enhancing the inhibition of focal contact formation and loss of tight junctions known to be associated with the enzymatic activity of toxin A.

Keywords

References

  1. Alscher, K. T., P. T. Phang, T. E. McDonald, and K. R. Walley. 2001. Enteral feeding decreases gut apoptosis, permeability, and lung inflammation during murine endotoxemia. Am. J. Physiol. Gastrointest. Liver Physiol. 281: G569-G576.
  2. Chang, J. S., D. Y. Noh, I. A. Park, M. J. Kim, H. Song, S. H. Ryu, and P. G. Suh. 1997. Overexpression of phospholipase Cgamma1 in rat 3Y1 fibroblast cells leads to malignant transformation. Cancer Res. 57: 5465-5468.
  3. Choi, H. R., W. K. Kim, E. Y. Kim, H. Jung, J. H. Kim, B. S. Han, et al. 2012. Protein tyrosine phosphatase profiling analysis of HIB-1B cells during brown adipogenesis. J. Microbiol. Biotechnol. 22: 1029-1033. https://doi.org/10.4014/jmb.1112.12059
  4. Di Bona, D., M. Cippitelli, C. Fionda, C. Camma, A. Licata, A. Santoni, and A. Craxi. 2006. Oxidative stress inhibits IFNalpha-induced antiviral gene expression by blocking the JAKSTAT pathway. J. Hepatol. 45: 271-279. https://doi.org/10.1016/j.jhep.2006.01.037
  5. Farrell, F. and A. Lee. 2004. The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist 5:18-30.
  6. Huang, L. J., S. N. Constantinescu, and H. F. Lodish. 2001. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol. Cell 8: 1327-1338. https://doi.org/10.1016/S1097-2765(01)00401-4
  7. Jang, E. H., C. S. Park, S. K. Lee, J. E. Pie, and J. H. Kang. 2007. Excessive nitric oxide attenuates leptin-mediated signal transducer and activator of transcription 3 activation. Life Sci. 80: 609-617. https://doi.org/10.1016/j.lfs.2006.10.007
  8. Just, I., G. Fritz, K. Aktories, M. Giry, M. R. Popoff, P. Boquet, et al. 1994. Clostridium difficile toxin B acts on the GTPbinding protein Rho. J. Biol. Chem. 269: 10706-10712.
  9. Just, I., J. Selzer, C. von Eichel-Streiber, and K. Aktories. 1995. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J. Clin. Invest. 95: 1026-1031. https://doi.org/10.1172/JCI117747
  10. Just, I., J. Selzer, M. Wilm, C. von Eichel-Streiber, M. Mann, and K. Aktories. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500-503. https://doi.org/10.1038/375500a0
  11. Just, I., M. Wilm, J. Selzer, G. Rex, C. von Eichel-Streiber, M. Mann, and K. Aktories. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270: 13932-13936. https://doi.org/10.1074/jbc.270.23.13932
  12. Kang, J. K., C. H. Chang, H. J. Nam, S. K. Kim, K. J. Ahn, H. Seok, et al. 2010. Downregulation of erythropoietin receptor by overexpression of phospholipase C-gamma 1 is critical for decrease on focal adhesion in transformed cells. Cell Oncol. (Dordr) 34: 11-21.
  13. Kim, H., E. Kokkotou, X. Na, S. H. Rhee, M. P. Moyer, C. Pothoulakis, and J. T. Lamont. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129: 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
  14. Kim, H., S. H. Rhee, E. Kokkotou, X. Na, T. Savidge, M. P. Moyer, et al. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245. https://doi.org/10.1074/jbc.M413842200
  15. Kim, H., S. H. Rhee, C. Pothoulakis, and J. T. LaMont. 2009. Clostridium difficile toxin A binds colonocyte Src causing dephosphorylation of focal adhesion kinase and paxillin. Exp. Cell Res. 315: 3336-3344. https://doi.org/10.1016/j.yexcr.2009.05.020
  16. Kim, H., S. H. Rhee, C. Pothoulakis, and J. T. Lamont. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133: 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
  17. Kurdi, M. and G. W. Booz. 2007. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J. Cardiovasc. Pharmacol. 50: 126-141. https://doi.org/10.1097/FJC.0b013e318068dd49
  18. Lacombe, C. and P. Mayeux. 1999. Erythropoietin (Epo) receptor and Epo mimetics. Adv. Nephrol. Necker Hosp. 29: 177-189.
  19. Lamont, J. T. 2002. Theodore E. Woodward Award. How bacterial enterotoxins work: Insights from in vivo studies. Trans. Am. Clin. Climatol. Assoc. 113: 167-180; discussion 180-181.
  20. Mazzoni, A., V. Bronte, A. Visintin, J. H. Spitzer, E. Apolloni, P. Serafini, et al. 2002. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168: 689-695.
  21. Menier, C., C. Guillard, B. Cassinat, E. D. Carosella, and N. Rouas-Freiss. 2008. HLA-G turns off erythropoietin receptor signaling through JAK2 and JAK2 V617F dephosphorylation: Clinical relevance in polycythemia vera. Leukemia 22: 578-584. https://doi.org/10.1038/sj.leu.2405050
  22. Nam, H. J., J. K. Kang, S. K. Kim, K. J. Ahn, H. Seok, S. J. Park, et al. 2011. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J. Biol. Chem. 285: 32888-32896.
  23. Neumann, D., L. Wikstrom, S. S. Watowich, and H. F. Lodish. 1993. Intermediates in degradation of the erythropoietin receptor accumulate and are degraded in lysosomes. J. Biol. Chem. 268: 13639-13649.
  24. Pothoulakis, C., R. J. Gilbert, C. Cladaras, I. Castagliuolo, G. Semenza, Y. Hitti, et al. 1996. Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin A. J. Clin. Invest. 98: 641-649. https://doi.org/10.1172/JCI118835
  25. Pothoulakis, C. and J. T. Lamont. 2001. Microbes and microbial toxins: Paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G178-G183.
  26. Pothoulakis, C., R. Sullivan, D. A. Melnick, G. Triadafilopoulos, A. S. Gadenne, T. Meshulam, and J. T. LaMont. 1988. Clostridium difficile toxin A stimulates intracellular calcium release and chemotactic response in human granulocytes. J. Clin. Invest. 81: 1741-1745. https://doi.org/10.1172/JCI113514
  27. Teter, K., M. G. Jobling, D. Sentz, and R. K. Holmes. 2006. The cholera toxin A1(3) subdomain is essential for interaction with ADP-ribosylation factor 6 and full toxic activity but is not required for translocation from the endoplasmic reticulum to the cytosol. Infect. Immun. 74: 2259-2267. https://doi.org/10.1128/IAI.74.4.2259-2267.2006
  28. Walrafen, P., F. Verdier, Z. Kadri, S. Chretien, C. Lacombe, and P. Mayeux. 2005. Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 105: 600-608. https://doi.org/10.1182/blood-2004-03-1216
  29. Warny, M., A. C. Keates, S. Keates, I. Castagliuolo, J. K. Zacks, S. Aboudola, et al. 2000. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105: 1147-1156. https://doi.org/10.1172/JCI7545
  30. Xiong, H., Z. G. Zhang, X. Q. Tian, D. F. Sun, Q. C. Liang, Y. J. Zhang, et al. 2008. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 10: 287-297.
  31. Yoshimura, A., A. D. D'Andrea, and H. F. Lodish. 1990. Friend spleen focus-forming virus glycoprotein gp55 interacts with the erythropoietin receptor in the endoplasmic reticulum and affects receptor metabolism. Proc. Natl. Acad. Sci. USA 87: 4139-4143. https://doi.org/10.1073/pnas.87.11.4139

Cited by

  1. Effect of Antisera from Clostridium difficile-Infected Mice on Toxin-A-Induced Colonic Epithelial Cell Death Signaling vol.24, pp.5, 2012, https://doi.org/10.4014/jmb.1401.01059
  2. ITF promotes migration of intestinal epithelial cells through crosstalk between the ERK and JAK/STAT3 pathways vol.6, pp.None, 2012, https://doi.org/10.1038/srep33014
  3. 인간 대장상피세포 밀착연접 형성과정에서 NQO1 저해 효과 vol.26, pp.5, 2012, https://doi.org/10.5352/jls.2016.26.5.531
  4. The American Cockroach Peptide Periplanetasin-2 Blocks Clostridium Difficile Toxin A-Induced Cell Damage and Inflammation in the Gut vol.27, pp.4, 2012, https://doi.org/10.4014/jmb.1612.12012
  5. NQO1 (NAD(P)H:quinone oxidoreductase 1)에 의한 대식세포 활성화 억제 vol.27, pp.8, 2012, https://doi.org/10.5352/jls.2017.27.8.873
  6. Constitutive STAT5 activation regulates Paneth and Paneth-like cells to control Clostridium difficile colitis vol.2, pp.2, 2012, https://doi.org/10.26508/lsa.201900296
  7. JAK/STAT3 Pathway in Human Intestinal Epithelial Cells During Trefoil Factor 3(TFF3) Mediated Cell Migration vol.17, pp.None, 2012, https://doi.org/10.2174/1570180817666200204104420
  8. A centric view of JAK/STAT5 in intestinal homeostasis, infection, and inflammation vol.139, pp.None, 2012, https://doi.org/10.1016/j.cyto.2020.155392