DOI QR코드

DOI QR Code

Application of Bacillus subtilis 168 as a Multifunctional Agent for Improvement of the Durability of Cement Mortar

  • Park, Sung-Jin (School of Life Sciences and Institute for Microorganisms, Kyungpook National University) ;
  • Park, Jong-Myong (School of Life Sciences and Institute for Microorganisms, Kyungpook National University) ;
  • Kim, Wha-Jung (School of Architecture and Architectural Engineering, Kyungpook National University) ;
  • Ghim, Sa-Youl (School of Life Sciences and Institute for Microorganisms, Kyungpook National University)
  • Received : 2012.02.27
  • Accepted : 2012.07.10
  • Published : 2012.11.28

Abstract

Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.

Keywords

References

  1. Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J. Ind. Microbiol. Biotechnol. 36: 433-438. https://doi.org/10.1007/s10295-008-0514-7
  2. Chiara, B., G. Alessandro, M. Giorgio, R. Mila, T. Elena, and P. Brunella. 2007. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228-235. https://doi.org/10.1128/JB.01450-06
  3. Clifton, J. R. and G. J. C. Frohnsdorff. 1982. Stone consolidating materials: A status report, pp. 287-311. In: Conservation of Historic Stone Buildings and Monuments. National Academy Press Washington DC.
  4. De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
  5. De Muynck, W., N. De. Beliea, and W. Verstraeteb. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  6. Dick, J., W. De Windt, B. De Graef, H. Saveyn, P. Van der Meeren, N. De Belie, and W. Verstraete. 2006. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17: 357-367. https://doi.org/10.1007/s10532-005-9006-x
  7. Dreesen, R. and M. Dusar. 2004. Historical building stones in the province of Limburg (NE Belgium): Role of petrography in provenance and durability assessment. Mater. Charact. 53: 273-287. https://doi.org/10.1016/j.matchar.2004.07.001
  8. Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
  9. Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
  10. Jonkers, H. M., A. Thijssena, G. Muyzerb, O. Copuroglua, and E. Schlangena. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235.
  11. Knust, F., N. Ogasawara, and I. Moszer. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249-256. https://doi.org/10.1038/36786
  12. Le Metayer-Levrel, G., S. Castanier, G. Orial, J. F. Loubier, and J. P. Perthuisot. 1999. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 126: 25-34. https://doi.org/10.1016/S0037-0738(99)00029-9
  13. Lewin, S. Z. and N. S. Baer. 1974. Rationale of the barium hydroxide-urea treatment of decayed stone. Studies Conserv. 19: 24-35. https://doi.org/10.2307/1505632
  14. Massimiliano, M., T. V. Pieter, B. Perito, M. Giorgio, and L. C. Martinez. 2010. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol. Ecol. 71: 341-350. https://doi.org/10.1111/j.1574-6941.2009.00805.x
  15. Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S.-Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782-788.
  16. Ramachandran, S. K., V. Ramkrishnan, and S. S. Bang. 2001. Remediation of concrete using microorganisms. ACI Mater. J. 98: 3-9.
  17. Rivadeneyra, M. A., R. Delgado, A. D. Moral, M. R. Ferrer, and A. Ramos-Cormenzana. 1994. Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol. Ecol. 13: 197-204. https://doi.org/10.1111/j.1574-6941.1994.tb00066.x
  18. Rodriguez-Navarro, C., M. Rodriguez-Gallego, K. Ben Chekroun, and M. T. Gonzalez-Munoz. 2003. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ. Microbiol. 69: 2182-2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
  19. Rodriguez-Navarro, C., E. Sebastian, and M. Rodriguez-Gallego. 1997. An urban model for dolomite precipitation: Authigenic dolomite on weathered building stones. Sediment. Geol. 109: 1-11. https://doi.org/10.1016/S0037-0738(96)00041-3
  20. Sarda, D., H. S. Choonia, D. D. Sarode, and S. S. Lele. 2009. Biocalcification by Bacillus pasteurii urease: A novel application. J. Ind. Microbiol. Biotechnol. 36: 1111-1115. https://doi.org/10.1007/s10295-009-0581-4
  21. Shirakawa, M. A., M. A. Cincotto, D. Atencio, C. C. Gaylarde, and V. M. John. 2011. Effect of culture medium on biocalcification by Pseudomonas putida, Lysinibacillus sphaericus and Bacillus subtilis. Brazilian J. Microbiol. 42: 499-507. https://doi.org/10.1590/S1517-83822011000200014
  22. Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial biomediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods 36: 139-145. https://doi.org/10.1016/S0167-7012(99)00019-6
  23. Tiano, P., E. Cantisani, I. Sutherland, and J. M. Paget. 2006. Biomediated reinforcement of weathered calcareous stones. J. Cult. Herit. 7: 49-55. https://doi.org/10.1016/j.culher.2005.10.003
  24. Vempada, S. R., S. S. P. Reddy, M. V. S. Rao, and C. Sasikala. 2011. Strength enhancement of cement mortar using micoorganisms: An experimental study. Int. J. Earth Sci. Eng. 4: 933-936.
  25. Wakefield, R. D. and M. S. Jones. 1998. An introduction to stone colonizing micro-organisms and biodeterioration of building stone. Q. J. Eng. Geol. 31: 301-313. https://doi.org/10.1144/GSL.QJEG.1998.031.P4.03
  26. Wolff, S., H. Antelmann, D. Albrecht, D. Becher, J. Bernhardt, S. Bron, et al. 2007. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. J. Chromatogr. B 849: 129-140. https://doi.org/10.1016/j.jchromb.2006.09.029

Cited by

  1. The Effects of Paenibacillus polymyxa E681 on Antifungal and Crack Remediation of Cement Paste vol.69, pp.4, 2012, https://doi.org/10.1007/s00284-014-0604-x
  2. 다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정 vol.25, pp.2, 2012, https://doi.org/10.5352/jls.2015.25.2.237
  3. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms vol.2, pp.None, 2012, https://doi.org/10.1038/npjbiofilms.2015.31
  4. Architects of nature: growing buildings with bacterial biofilms vol.10, pp.5, 2012, https://doi.org/10.1111/1751-7915.12833
  5. Improving the strength of sandy soils via ureolytic CaCO3 solidification by Sporosarcina ureae vol.15, pp.14, 2012, https://doi.org/10.5194/bg-15-4367-2018
  6. Crack filling in concrete by addition of Bacillus subtilis spores - Preliminary study vol.85, pp.205, 2018, https://doi.org/10.15446/dyna.v85n205.68591
  7. Effects of Bacillus subtilis biocementation on the mechanical properties of mortars vol.12, pp.1, 2012, https://doi.org/10.1590/s1983-41952019000100005
  8. Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus sp. AK13 for Self-Healing Concrete vol.30, pp.3, 2012, https://doi.org/10.4014/jmb.1908.08044
  9. Mortars with the addition of bacterial spores: Evaluation of porosity using different test methods vol.30, pp.None, 2012, https://doi.org/10.1016/j.jobe.2020.101235
  10. Bioprecipitation of calcium carbonate by Bacillus subtilis and its potential to self-healing in cement-based materials vol.18, pp.5, 2012, https://doi.org/10.22201/icat.24486736e.2020.18.5.1280
  11. Potential of cave isolated bacteria in self-healing of cement-based materials vol.45, pp.None, 2012, https://doi.org/10.1016/j.jobe.2021.103551