DOI QR코드

DOI QR Code

Purification and Characterization of a Thermophilic Cellulase from a Novel Cellulolytic Strain, Paenibacillus barcinonensis

  • Asha, Balachandrababu Malini (Department of Biotechnology, School of Life Sciences, Pondicherry University) ;
  • Revathi, Masilamani (Department of Biotechnology, School of Life Sciences, Pondicherry University) ;
  • Yadav, Amit (Department of Biotechnology, School of Life Sciences, Pondicherry University) ;
  • Sakthivel, Natarajan (Department of Biotechnology, School of Life Sciences, Pondicherry University)
  • Received : 2012.02.07
  • Accepted : 2012.07.11
  • Published : 2012.11.28

Abstract

A novel bacterial strain, MG7, with high cellulase activity was isolated and identified by morphological characteristics and molecular phylogeny analysis as Paenibacillus barcinonensis. Maximum production of cellulase by MG7 was observed at pH 7.0 and $35^{\circ}C$. The enzyme was purified with a specific activity of 16.88 U/mg, the cellulase activity was observed in a zymogram, and its molecular mass (58.6 kDa) was confirmed by SDS-PAGE. The purified enzyme showed maximum activity at pH 6.0 and $65^{\circ}C$ and degraded cellulosic substrates such as carboxy methyl cellulose (CMC), Avicel, filter paper, and ${\beta}$-glucan. The enzyme showed stability with 0.5% concentration of various surfactants. The $K_m$ and $V_{max}$ of cellulase for CMC and Avicel were found to be 0.459mg/ml and 10.46mg/ml/h, and 1.01 mg/ml and 10.0 mg/ml/h, respectively. The high catalytic activity and its stability to temperature, pH, surfactants, and metal ions indicated that the cellulase enzyme by MG7 is a good candidate for biotechnological applications.

Keywords

References

  1. Adsul, M. G., K. B. Bastawde, A. J. Varma, and D. V. Gokhale. 2007. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulose production. Bioresour. Technol. 98: 1467-1473. https://doi.org/10.1016/j.biortech.2006.02.036
  2. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253-260.
  3. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  4. Castanon, M. and C. R. Wilke. 1981. Effects of the surfactant Tween 80 on enzymatic hydrolysis of newspaper. Biotechnol. Bioeng. 23: 1365-1372. https://doi.org/10.1002/bit.260230615
  5. Choudhary, N., P. P. Gray, and N. W. Dunn. 1980. Reducing sugar accumulation from alkali pretreated sugar cane bagasse using Cellulomonas. Eur. J. Appl. Microbiol. 11: 50-54. https://doi.org/10.1007/BF00514078
  6. Deka, D., P. Bhargavi, A. Sharma, D. Goyal, M. Jawed, and A. Goyal. 2011. Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrate. Enz. Res. 2011: 151656
  7. Eckert, K. and E. Schneider. 2003. A thermoacidophilic endoglucanase(CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur. J. Biochem. 270: 3593- 3602. https://doi.org/10.1046/j.1432-1033.2003.03744.x
  8. Fan, L. T., Y. Lee, and M. Z. Gharpura. 1982. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv. Biochem. Eng. 23: 157-187.
  9. Fujimoto, N., T. Kosaka, T. Nakao, and M. Yamada. 2011. Bacillus licheniformis bearing a high cellulose-degrading activity, which was isolated as a heat-resistant and micro-aerophilic microorganism from bovine rumen. Open Biotechnol. J. 5: 7-13. https://doi.org/10.2174/1874070701105010007
  10. Fukumori, F., T. Kudo, and K. Korikoshi. 1985. Purification and properties of a cellulase from alkalophilic Bacillus sp. No. 1139. J. Gen. Microbiol. 131: 3339-3345.
  11. Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller, and R. A. Warren. 1991. Domains in microbial beta-1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Rev. 55: 303-315.
  12. Hakamada, Y., K. Koike, T. Yoshimatsu, H. Mori, T. Kobayashio, and S. Ito. 1997. Thermostable alkaline cellulase from an alkalophilic isolate, Bacillus sp. KSM-S237. Extremophiles 1: 151-156. https://doi.org/10.1007/s007920050028
  13. Han, S. J., Y. J. Yoo, and H. S. Kang. 1995. Characterization of bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo and endoglucanase activity. J. Biol. Chem. 270: 26012-26019. https://doi.org/10.1074/jbc.270.43.26012
  14. Hong, J., H. Tamaki, and S. Akiba. 2001. Cloning of a gene encoding a highly stable endo ${\beta}$1,4-glucanase from Aspergillus niger and its expression in yeast. J. Biosci. Bioeng. 92: 434-
  15. Humprey, A. E., A. Moreira, W. Armiger, and D. Zabriskie. 1977. Production of single cell protein from cellulose waste. Biotechnol. Biochem. Symp. 7: 45-64.
  16. Ibrahim, A. S. S. and A. I. El-diwany. 2007. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust. J. Basic Appl. Sci. 4: 473-478.
  17. Il, K. T., J. D. Han, B. S. Jeon, C. B. Yang, K. N. Kim, and M. K. Kim. 2000. Isolation from cattle manure and characterization of Bacillus licheniformis NLR1-X33 secreting cellulase. Asian Aust. J. Anim. Sci. 13: 427-431.
  18. Ito, S. 1997. Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles 1: 61-66. https://doi.org/10.1007/s007920050015
  19. Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada. 1998. Alkaline detergent enzymes from alkaliphiles: Enzymatic properties, genetics, and structures. Extremophiles 2: 185-190. https://doi.org/10.1007/s007920050059
  20. Kang, H. J., K. Uegaki, and H. Fukada. 2007. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshi. Extremophiles 11: 251-256. https://doi.org/10.1007/s00792-006-0033-2
  21. Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44: 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
  22. Kim, C. H. 1995. Characterization and substrate specificity of an endo-${\beta}$-1,4-D-glucanase I (avicelase) from an extracellular multienzyme complex of Bacillus circulans. Appl. Environ. Microbiol. 61: 959-965.
  23. Kim, J. Y., S. H. Hur, and J. H. Hong. 2005. Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol. Lett. 27: 313-316. https://doi.org/10.1007/s10529-005-0685-5
  24. Kotchoni, S. O., E. W. Gachomo, B. O. Omafuvbe, and O. O. Shonukan. 2006. Purification and biochemical characterization of carboxymethyl cellulase (CMCase) from a catabolite repression insensitive mutant of Bacillus pumilus. Int. J. Agric. Biol. 8: 286-292.
  25. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  26. Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
  27. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constant. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
  28. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193: 265-275.
  29. Mandel, M. 1975. Microbial sources of cellulases. Biotechnol. Bioenerg. Symp. 5: 81-105.
  30. Mawadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83: 177-181. https://doi.org/10.1016/S0168-1656(00)00305-9
  31. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  32. Morissey, J. H. 1981. Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity. Anal. Biochem. 117: 307-310. https://doi.org/10.1016/0003-2697(81)90783-1
  33. Ogawa, A., A. Suzumatsu, S. Takizawa, H. Kubota, K. Sawada, Y. Hakamada, et al. 2007. Endoglucanase from Paenibacillus spp. from a new clan in glycoside hydrolase family 5. J. Biotechnol. 129: 406-414. https://doi.org/10.1016/j.jbiotec.2007.01.020
  34. Ozaki, K. and S. Ito. 1991. Purification and properties of an acid endo-1,4-glucanase from Bacillus sp. KSM-330. J. Gen. Microbiol. 137: 41-48. https://doi.org/10.1099/00221287-137-1-41
  35. Robson, L. M. and G. H. Chambliss. 1984. Characterization of the cellulolytic activity of a Bacillus isolate. Appl. Environ. Microbiol. 47: 1039.
  36. Saxena, S., J. Bahadur, and A. Varma. 1991. Production and localisation of carboxymethylcellulase, xylanase and ${\beta}$-glucosidase from Cellulomonas and Micrococcus spp. Appl. Microbiol. Biotechnol. 34: 668-670. https://doi.org/10.1007/BF00167920
  37. Seneath, P. H. A., N. S. Mair, E. M. Sharpe, and J. G. Holt. 1986. Bergey's Manual of Systematic Bacteriology, 9 Ed. Williams and Wilkins, Baltimore,
  38. Shankar, I. T. and L. Isaiarasu. 2011. Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle East J. Sci. Res. 8: 40-45.
  39. Sunishkumar, R., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkateswarlu, Om Prakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98:145-154. https://doi.org/10.1111/j.1365-2672.2004.02435.x
  40. Veiga, M., A. Esparis, and J. Fabregas. 1983. Isolation of cellulolytic actinomycetes from marine sediments. Appl. Environ. Microbiol. 47: 219-211.
  41. Wang, C. M., C. L. Shyu, S. P. Ho, and S. H. Chiou. 2008. Characterization of a novel thermophilic, cellulose degrading bacterium Paenibacillus sp. strain B39. Lett. Appl. Microbiol. 47: 46-53. https://doi.org/10.1111/j.1472-765X.2008.02385.x
  42. Weisburg, W. G., D. A. Barns Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  43. Wood, P. J. 1980. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr. Res. 85: 271-287. https://doi.org/10.1016/S0008-6215(00)84676-5
  44. Wu, J. and L. K. Ju. 1998. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 14: 649-652. https://doi.org/10.1021/bp980040v

Cited by

  1. Sugarcane Bagasse Hydrolysis Using Yeast Cellulolytic Enzymes vol.23, pp.10, 2012, https://doi.org/10.4014/jmb.1302.02062
  2. Cloning and Characterizing the Thermophilic and Detergent Stable Cellulase CelMytB from Saccharophagus sp. Myt-1 vol.54, pp.1, 2012, https://doi.org/10.1007/s12088-013-0421-0
  3. Screening and Characterization of a Novel Cellulase Gene from the Gut Microflora of Hermetia illucens Using Metagenomic Library vol.24, pp.9, 2012, https://doi.org/10.4014/jmb.1405.05001
  4. Cellulophaga lytica PKA 1005의 Cellulose 분해 조효소 생산 최적 조건과 조효소의 특성 vol.42, pp.1, 2012, https://doi.org/10.4014/kjmb.1311.11004
  5. Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization vol.30, pp.11, 2014, https://doi.org/10.1007/s11274-014-1723-z
  6. Isolation and characterization of a novel thermostable β-glucosidase from Bacillus subtilis SU40 vol.51, pp.1, 2012, https://doi.org/10.1134/s0003683815010032
  7. Simplification and optimization of media ingredients for enhanced production of CMCase by newly isolated Bacillus subtilis NA15 vol.34, pp.2, 2015, https://doi.org/10.1002/ep.12004
  8. Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli vol.18, pp.2, 2012, https://doi.org/10.1016/j.ejbt.2014.12.007
  9. Identification and Characterization of Two Endogenous β-Glucosidases from the Termite Coptotermes formosanus vol.176, pp.7, 2012, https://doi.org/10.1007/s12010-015-1699-7
  10. Draft Genome Sequence of Cellulolytic and Xylanolytic Paenibacillus sp. A59, Isolated from Decaying Forest Soil from Patagonia, Argentina vol.3, pp.5, 2012, https://doi.org/10.1128/genomea.01233-15
  11. Comprehensive review on additives of topical dosage forms for drug delivery vol.22, pp.8, 2015, https://doi.org/10.3109/10717544.2013.879355
  12. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111 vol.179, pp.5, 2016, https://doi.org/10.1007/s12010-016-2036-5
  13. Assessing the Performance of Bacterial Cellulases: the Use of Bacillus and Paenibacillus Strains as Enzyme Sources for Lignocellulose Saccharification vol.9, pp.4, 2016, https://doi.org/10.1007/s12155-016-9797-0
  14. Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies vol.66, pp.3, 2012, https://doi.org/10.1007/s13213-016-1221-7
  15. Production and characterization of endoglucanase secreted by Streptomyces capoamus isolated from Caatinga vol.15, pp.42, 2012, https://doi.org/10.5897/ajb2015.14610
  16. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring vol.182, pp.4, 2012, https://doi.org/10.1007/s12010-017-2405-8
  17. Characterization of endoglucanase from Paenibacillus sp. M33, a novel isolate from a freshwater swamp forest vol.57, pp.2, 2012, https://doi.org/10.1002/jobm.201600225
  18. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass vol.12, pp.4, 2012, https://doi.org/10.1371/journal.pone.0175004
  19. Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes vol.15, pp.1, 2012, https://doi.org/10.1016/j.jgeb.2016.12.005
  20. Liczebność względnie beztlenowych, mezofilnych, przetrwalnikujących bakterii celulolitycznych w glebie spod uprawy drzew owocowych nawożonej kompostem na bazie miału z vol.15, pp.2, 2012, https://doi.org/10.21697/seb.2017.15.2.09
  21. Cellulase- and Xylanase-Producing Bacterial Isolates with the Ability to Saccharify Wheat Straw and Their Potential Use in the Production of Pharmaceuticals and Chemicals from Lignocellulosic Material vol.9, pp.5, 2018, https://doi.org/10.1007/s12649-017-9849-5
  22. Detergent‐compatible bacterial cellulases vol.59, pp.2, 2012, https://doi.org/10.1002/jobm.201800436
  23. Production, characteristics, and biotechnological applications of microbial xylanases vol.103, pp.21, 2019, https://doi.org/10.1007/s00253-019-10108-6
  24. High Production of Cellulase by a Newly Isolated Strain Paenibacillus sp. IM7 vol.11, pp.11, 2012, https://doi.org/10.1007/s12649-019-00832-5
  25. Ideal Feedstock and Fermentation Process Improvements for the Production of Lignocellulolytic Enzymes vol.9, pp.1, 2012, https://doi.org/10.3390/pr9010038
  26. Genomic Insights Driven Statistical Optimization for Production of Efficient Cellulase by Himalayan Thermophilic Bacillus sp. PCH94 Using Agricultural Waste vol.12, pp.12, 2012, https://doi.org/10.1007/s12649-021-01491-1
  27. Studies on cellulases of some cellulose-degrading soil fungi vol.204, pp.1, 2012, https://doi.org/10.1007/s00203-021-02705-9