DOI QR코드

DOI QR Code

Metabolic Roles of Carotenoid Produced by Non-Photosynthetic Bacterium Gordonia alkanivorans SKF120101

  • Jeon, Bo Young (Department of Chemical and Biological Engineering, Seokyeong University) ;
  • Kim, Bo Young (Department of Chemical and Biological Engineering, Seokyeong University) ;
  • Jung, Il Lae (Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute) ;
  • Park, Doo Hyun (Department of Chemical and Biological Engineering, Seokyeong University)
  • Received : 2012.07.23
  • Accepted : 2012.08.16
  • Published : 2012.11.28

Abstract

Carotenoids produced by non-photosynthetic bacteria protect organisms against lethal photodynamic reactions and scavenge oxygenic radicals. However, the carotenoid produced by Gordonia alkanivorans SKF120101 is coupled to reducing power generation. SKF120101 selectively produces carotenoid under light conditions. The growth yield of SKF120101 cultivated under light conditions was higher than that under dark condition. In the cyclic voltammetry, both upper and lower voltammograms for neutral red (NR) immobilized in intact cells of SKF120101 were not shifted in the condition without external redox sources but were commonly shifted downward by glucose addition and light. Electric current generation in a biofuel cell system (BFCS) catalyzed by harvested cells of SKF120101 was higher under light than dark condition. The ratio of electricity generation to glucose consumption by SKF120101 cultivated in BFCS was higher under light than dark condition. The carotenoid produced by SKF120101 catalyzes production of reducing power from light energy, first evaluated by the electrochemical technique used in this research.

Keywords

References

  1. Arenskotter, M., D. Broker, and A. Steinbuchel. 2004. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70: 3195-3204. https://doi.org/10.1128/AEM.70.6.3195-3204.2004
  2. Armstrong, G. A. and J. E. Hearst. 1996. Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J. 10: 228-237.
  3. Banh, Q., M. Arenskotter, D. Broker, and A. Steinbüchel. 2004. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70: 3195-3204. https://doi.org/10.1128/AEM.70.6.3195-3204.2004
  4. Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485. https://doi.org/10.1126/science.1066771
  5. Broke, D., M. Arenskotter, A. Legatzki, D. H. Nies, and A. Steinbuchel. 2004. Characterization of the 101-kilobase-pair megaplasmid pkB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1. J. Bacteriol. 186: 212-225. https://doi.org/10.1128/JB.186.1.212-225.2004
  6. Browning, D. F., D. E. Whitworth, and D. A. Hodgson. 2003. Light-induced carotenogenesis in Myxococcus xanthus: Functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol. Microbiol. 48: 237-251. https://doi.org/10.1046/j.1365-2958.2003.03431.x
  7. Chiao, M., K. B. Lam, and L. Lin. 2006. Micromachined microbial and photosynthetic fuel cells. J. Micromech. Microeng. 16: 2547-2553. https://doi.org/10.1088/0960-1317/16/12/005
  8. Cogdell, R. J. and H. A. Frank. 1987. How carotenoids function in photosynthetic bacteria. Biochim. Biophys. Acta 895: 63-79. https://doi.org/10.1016/S0304-4173(87)80008-3
  9. De Miguel, T., C. Sieiro, M. Poza, and T. G. Villa. 2000. Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Int. Microbiol. 3: 107-111.
  10. Drzyzga, O., J. M. Navarro Llorens, L. Fernandez de las Heras, E. Garcia Fernandez, and J. Perera. 2009. Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int. J. Syst. Evol. Microbiol. 59: 1011-1015. https://doi.org/10.1099/ijs.0.005777-0
  11. Hiessl, S., J. Schuldes, A. Thurmer, T. Halbsguth, D. Broke, A. Angelov, et al. 2012. Involvement of two latex-cleaning proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2. Appl. Environ. Microbiol. 78: 2874-2887. https://doi.org/10.1128/AEM.07969-11
  12. Jagannadham, M. V., V. J. Rao, and S. Shivaji. 1991. The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: Purification, structure, and interaction with synthetic membrane. J. Bacteriol. 173: 7911-7917.
  13. Jeon, B. Y., I. L. Jung, and D. H. Park. 2011. Enrichment of $CO_2$-fixing bacteria in cylinder-type electrochemical bioreactor with built-in anode compartment. J. Microbiol. Biotechnol. 21: 590-598.
  14. Kakati, B. K. and D. Deka. 2007. Effect of resin matrix precursor on the properties of graphite composite bipolar plate for PEM fuel cell. Energy Fuels 21: 1681-1687. https://doi.org/10.1021/ef0603582
  15. Kim, S. B., R. Brown, C. Oldfield, S. C. Gilbert, and M. Goodfellow. 1999. Gordonia desulfuricans sp. nov., a benzothiophenedesulphurizing actinomycete. Int. J. Syst. Bacteriol. 49: 1845-1851. https://doi.org/10.1099/00207713-49-4-1845
  16. Kim, I. S., K. J. Chae, M. J. Choi, and W. Verstraete. 2008. Microbial fuel cells: Recent advances, bacterial communities and application beyond electricity generation. Environ. Eng. Res. 13: 51-65. https://doi.org/10.4491/eer.2008.13.2.051
  17. Kummer, C., P. Schumann, and E. Stackebrandt. 1999. Gordonia alkanivorans sp. nov. isolated from tar-contaminated soil. Int. J. Syst. Bacteriol. 49: 1513-1522. https://doi.org/10.1099/00207713-49-4-1513
  18. Lee, J. J., S. K. Rhee, and S. T. Lee. 2001. Degradation of 3-methylpyridine and 3-ethylpyridine by Gordonia nitida LE31. Appl. Environ. Microbiol. 67: 4342-4345. https://doi.org/10.1128/AEM.67.9.4342-4345.2001
  19. Lee, S. W., B. Y. Jeon, and D. H. Park. 2010. Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell. Biotechnol. Lett. 32: 483-487. https://doi.org/10.1007/s10529-009-0184-1
  20. Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382.
  21. Linos, A., A. Steinbuchel, C. Sproer, and R. M. Kroppenstedt. 1999. Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int. J. Syst. Bacteriol. 49: 1785-1791. https://doi.org/10.1099/00207713-49-4-1785
  22. Liu, H., S. Cheng, and B. E. Logan. 2005. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39: 658-662. https://doi.org/10.1021/es048927c
  23. Lowy, D. A., L. M. Tender, J. G. Zeikus, D. H. Park, and D. R. Lovley. 2006. Harvesting energy from the marine sedimentwater interface II. Kinetic activity of anode materials. Biosens. Bioelectron. 21: 2058-2063. https://doi.org/10.1016/j.bios.2006.01.033
  24. Mathews, M. M. and W. R. Sistrom. 1959. Function of carotenoid pigments in non-photosynthetic bacteria. Nature 184: 1892-1893. https://doi.org/10.1038/1841892a0
  25. Meckel, R. A. and A. S. Kester. 1980. Extractability of carotenoid pigments from non-photosynthetic bacteria with solvents and detergents: Implications for the location and binding of the pigments. J. Gen. Microbiol. 120: 111-116.
  26. Nelis, H. J. and A. P. De Leenheer. 1989. Profiling and quantitation of bacterial carotenoids by liquid chromatography and photodiode array detection. Appl. Environ. Microbiol. 55: 3065-3071.
  27. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 18: 2403-2410.
  28. Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292-1297. https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  29. Park, D. H., B. Y. Jeon, I. L. Jung, and B. Y. Kim. 2012. Characterization of light-reacting and carotenoid-producing Gordonia sp. Abstr. Int. Symp. Annu. Meet. Kor. Soc. Microbiol. Biotechnol. Busan, Korea, p. 389.
  30. Perry, K. L., T. A. Simonitch, K. J. Harrison-Lavoie, and S. T. Liu. 1986. Cloning and regulation of Erwinia herbicola pigment genes. J. Bacteriol. 168: 607-612.
  31. Stahl, W. and H. Sies. 2003. Antioxidant activity of carotenoids. Mol. Aspects Med. 24: 345-351. https://doi.org/10.1016/S0098-2997(03)00030-X
  32. Strik, D. P. B. T. B., R. A. Timmers, M. Helder, K. J. J. Steinbusch, H. V. M. Hamelers, and C. J. N. Buisman. 2011. Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 29: 41-49. https://doi.org/10.1016/j.tibtech.2010.10.001
  33. Tian, B., Z. Xu, Z. Sun, J. Lin, and Y. Hua. 2007. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim. Biophys. Acta 1770: 902-911. https://doi.org/10.1016/j.bbagen.2007.01.016
  34. Tuveson, R. W., R. A. Larson, and J. Kagan. 1988. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules. J. Bacteriol. 170: 4675-4680.
  35. Vershnin, A. 1999. Biological function of carotenoid - diversity and evolution. Biofactors 10: 99-104. https://doi.org/10.1002/biof.5520100203
  36. Zhang, L., Q. Yang, X. Luo, C. Fang, Q. Zhang, and Y. Tang. 2007. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Arch. Microbiol. 188: 411-419. https://doi.org/10.1007/s00203-007-0262-5

Cited by

  1. Influence of culture conditions towards optimal carotenoid production by Gordonia alkanivorans strain 1B vol.41, pp.2, 2012, https://doi.org/10.1007/s00449-017-1853-4
  2. Carotenoid Production by a Novel Isolate of Microbacterium paraoxydans vol.58, pp.1, 2012, https://doi.org/10.1007/s12088-017-0686-9
  3. An insight into the ecology, diversity and adaptations of Gordonia species vol.44, pp.4, 2018, https://doi.org/10.1080/1040841x.2017.1418286
  4. Differential transcriptional responses of carotenoid biosynthesis genes in the marine green alga Tetraselmis suecica exposed to redox and non-redox active metals vol.46, pp.1, 2012, https://doi.org/10.1007/s11033-018-04583-9
  5. Thermal‐ and Photo‐Induced Isomerization of All‐ E ‐ and Z ‐Isomer‐Rich Xanthophylls: Astaxanthin and Its Structurally‐Related Xanthophylls, Adonirubin vol.122, pp.5, 2012, https://doi.org/10.1002/ejlt.201900462