DOI QR코드

DOI QR Code

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

  • Cho, Jaeyong (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Hwang, In-Sok (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Hyemin (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Hwang, Ji Hong (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Hwang, Jae-Sam (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Dong Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • 투고 : 2012.05.18
  • 심사 : 2012.06.13
  • 발행 : 2012.11.28

초록

Antimicrobial peptides (AMPs) exert antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi, and viruses by various mechanisms. AMPs commonly possess particular characteristics by harboring cationic and amphipathic structures and binding to cell membranes, resulting in the leakage of essential cell contents by forming pores or disturbing lipid organization. These membrane disruptive mechanisms of AMPs are possible to explain according to the various structure forming pores in the membrane. Some AMPs inhibit DNA and/or RNA synthesis as well as apoptosis induction by reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Specifically, mitochondria play a major role in the apoptotic pathway. During apoptosis induced by AMPs, cells undergo cytochrome c release, caspase activation, phosphatidylserine externalization, plasma or mitochondrial membrane depolarization, DNA and nuclei damage, cell shrinkage, apoptotic body formation, and membrane blebbing. Even AMPs, which have been reported to exert membrane-active mechanisms, induce apoptosis in yeast. These phenomena were also discovered in tumor cells treated with AMPs. The apoptosis mechanism of AMPs is available for various therapeutics such as antibiotics for antibiotic-resistant pathogens that resist to the membrane active mechanism, and antitumor agents with selectivity to tumor cells.

키워드

과제정보

연구 과제번호 : Cooperative Research Program for Agriculture Science & Technology Development

연구 과제 주관 기관 : Rural Development Administration

참고문헌

  1. Aarbiou, J., G. S. Tjabringa, R. M. Verhoosel, D. K. Ninaber, S. R. White, L. T. Peltenburg, et al. 2006. Mechanisms of cell death induced by the neutrophil antimicrobial peptides ${\alpha}$-defensins and LL-37. Inflamm. Res. 55: 119-127. https://doi.org/10.1007/s00011-005-0062-9
  2. Aerts, A. M., D. Carmona-Gutierrez, S. Lefevre, G. Govaert, I. E. François, F. Madeo, et al. 2009. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 583: 2513-2516. https://doi.org/10.1016/j.febslet.2009.07.004
  3. Andres, M. T., M. Viejo-Díaz, and J. F. Fierro. 2008. Human lactoferrin induces apoptosis-like cell death in Candida albicans: Critical role of $K^+$-channel-mediated $K^+$ efflux. Antimicrob. Agents Chemother. 52: 4081-4088. https://doi.org/10.1128/AAC.01597-07
  4. Bak, M., R. P. Bywater, M. Hohwy, J. K. Thomsen, K. Adelhorst, H. J. Jakobsen, et al. 2001. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance. Biophys. J. 81: 1684-1698. https://doi.org/10.1016/S0006-3495(01)75822-5
  5. Barroso, G., S. Taylor, M. Morshedi, F. Manzur, F. Gavino, and S. Oehninger. 2006. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: A comparison of two different sperm subpopulations. Fertil. Steril. 85: 149-154. https://doi.org/10.1016/j.fertnstert.2005.06.046
  6. Bechinger, B. 1999. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solidstate NMR spectroscopy. Biochim. Biophys. Acta 1462: 157-183. https://doi.org/10.1016/S0005-2736(99)00205-9
  7. Benaroudj, N., D. H. Lee, and A. L. Goldberg. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276: 24261-24267. https://doi.org/10.1074/jbc.M101487200
  8. Boman, H. G. and D. Hultmark. 1987. Cell-free immunity in insects. Annu. Rev. Microbiol. 41: 103-126. https://doi.org/10.1146/annurev.mi.41.100187.000535
  9. Bortner, C. D. and J. A. Cidlowski. 2002. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ. 9: 1307-1310. https://doi.org/10.1038/sj.cdd.4401126
  10. Bortner, C. D. and J. A. Cidlowski. 2007. Cell shrinkage and monovalent cation fluxes: Role in apoptosis. Arch. Biochem. Biophys. 462: 176-188. https://doi.org/10.1016/j.abb.2007.01.020
  11. Broekaert, W. F., F. R. Terras, B. P. Cammue, and R. W. Osborn. 1995. Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108: 1353-1358. https://doi.org/10.1104/pp.108.4.1353
  12. Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250. https://doi.org/10.1038/nrmicro1098
  13. Burhans, W. C., M. Weinberger, M. A. Marchetti, L. Ramachandran, J. A. D'Urso, and G. Huberman. 2003. Apoptosis like yeast cell death in response to DNA damage and replication defects. Mutat. Res. 532: 227-243. https://doi.org/10.1016/j.mrfmmm.2003.08.019
  14. Cantor, R. S. 2002. Size distribution of barrel-stave aggregates of membrane peptides: Influence of the bilayer lateral pressure profile. Biophys. J. 82: 2520-2525. https://doi.org/10.1016/S0006-3495(02)75595-1
  15. Ceron, J. M., J. Contreras-Moreno, E. Puertollano, G. A. de Cienfuegos, M. A. Puertollano, and M. A. de Pablo. 2010. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells. Peptides 31: 1494-1503. https://doi.org/10.1016/j.peptides.2010.05.008
  16. Chan, S. C., L. Hui, and H. M. Chen. 1998. Enhancement of the cytolytic effect of antibacterial cecropin by the microvilli of cancer cells. Anticancer Res. 18: 4467-4474.
  17. Chen, H. M., W. Wang, D. Smith, and S. C. Chan. 1997. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim. Biophys. Acta 1336: 171-179. https://doi.org/10.1016/S0304-4165(97)00024-X
  18. Chiu, D., B. Lubin, and S. B. Shohet. 1979. Erythrocyte membrane lipid reorganization during the sickling process. Br. J. Haematol. 41: 223-234. https://doi.org/10.1111/j.1365-2141.1979.tb05851.x
  19. Cho, J. and D. G. Lee. 2011. Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie 93: 1873-1879. https://doi.org/10.1016/j.biochi.2011.07.011
  20. Cruciani, R. A., J. L. Barker, M. Zasloff, H. C. Chen, and O. Colamonici. 1991. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc. Natl. Acad. Sci. USA 88: 3792-3796. https://doi.org/10.1073/pnas.88.9.3792
  21. Dussmann, H., M. Rehm, D. Kogel, and J. H. Prehn. 2003. Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: A single-cell analysis. J. Cell Sci. 116: 525-536. https://doi.org/10.1242/jcs.00236
  22. Eisenberg, T., S. Buttner, G. Kroemer, and F. Madeo. 2007. The mitochondrial pathway in yeast apoptosis. Apoptosis 12: 1011-1023. https://doi.org/10.1007/s10495-007-0758-0
  23. Er, E., L. Oliver, P. F. Cartron, P. Juin, S. Manon, and F. M. Vallette. 2006. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim. Biophys. Acta 1757: 1301-1311. https://doi.org/10.1016/j.bbabio.2006.05.032
  24. Farnaud, S. and R. W. Evans. 2003. Lactoferrin - a multifunctional protein with antimicrobial properties. Mol. Immunol. 40: 395-405. https://doi.org/10.1016/S0161-5890(03)00152-4
  25. Fehlbaum, P., P. Bulet, S. Chernysh, J. P. Briand, J. P. Roussel, L. Letellier, et al. 1996. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93: 1221-1225. https://doi.org/10.1073/pnas.93.3.1221
  26. Franco, R., C. D. Bortner, and J. A. Cidlowski. 2006. Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis. J. Membr. Biol. 209: 43-58. https://doi.org/10.1007/s00232-005-0837-5
  27. Furlong, S. J., J. S. Mader, and D. W. Hoskin. 2006. Lactoferricininduced apoptosis in estrogen-non-responsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen. Oncol. Rep. 15: 1385-1390.
  28. Gudmundsson, G. H., B. Agerberth, J. Odeberg, T. Bergman, B. Olsson, and R. Salcedo. 1996. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 238: 325-332. https://doi.org/10.1111/j.1432-1033.1996.0325z.x
  29. Hale, J. D. and R. E. Hancock. 2007. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 5: 951-959. https://doi.org/10.1586/14787210.5.6.951
  30. Hancock, R. E. and H. G. Sahl. 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557. https://doi.org/10.1038/nbt1267
  31. Heiskanen, K. M., M. B. Bhat, H. W. Wang, J. Ma, and A. L. Nieminen. 1999. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J. Biol. Chem. 274: 5654-5658. https://doi.org/10.1074/jbc.274.9.5654
  32. Horton, K. L., K. M. Stewart, S. B. Fonseca, Q. Guo, and S. O. Kelley. 2008. Mitochondria-penetrating peptides. Chem. Biol. 15: 375-382. https://doi.org/10.1016/j.chembiol.2008.03.015
  33. Hoskin, D. W. and A. Ramamoorthy. 2007. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778: 357-375.
  34. Hsu, C. H., C. Chen, M. L. Jou, A. Y. Lee, Y. C. Lin, Y. P. Yu, et al. 2005. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 33: 4053-4064. https://doi.org/10.1093/nar/gki725
  35. Hwang, B., J. S. Hwang, J. Lee, and D. G. Lee. 2011. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem. Biophys. Res. Commun. 405: 267-271. https://doi.org/10.1016/j.bbrc.2011.01.026
  36. Hwang, B., J. S. Hwang, J. Lee, J. K. Kim, S. R. Kim, Y. Kim, and D. G. Lee. 2011. Induction of yeast apoptosis by an antimicrobial peptide, papiliocin. Biochem. Biophys. Res. Commun. 408: 89-93. https://doi.org/10.1016/j.bbrc.2011.03.125
  37. Hwang, J. S., J. Lee, B. Hwang, S. H. Nam, E. Y. Yun, S. R. Kim, and D. G. Lee. 2010. Isolation and characterization of psacotheasin, a novel knottin-type antimicrobial peptide, from Psacothea hilaris. J. Microbiol. Biotechnol. 20: 708-711. https://doi.org/10.4014/jmb.1002.02003
  38. Jin, X., H. Mei, X. Li, Y. Ma, A. H. Zeng, Y. Wang, et al. 2010. Apoptosis-inducing activity of the antimicrobial peptide cecropin of Musca domestica in human hepatocellular carcinoma cell line BEL-7402 and the possible mechanism. Acta Biochim. Biophys. Sin. 42: 259-265. https://doi.org/10.1093/abbs/gmq021
  39. Kapuscinski, J. 1995. DAPI: A DNA-specific fluorescent probe. Biotech. Histochem. 70: 220-233. https://doi.org/10.3109/10520299509108199
  40. Kataoka, M., Y. Fukura, Y. Shinohara, and Y. Baba. 2005. Analysis of mitochondrial membrane potential in the cells by microchip flow cytometry. Electrophoresis 26: 3025-3031. https://doi.org/10.1002/elps.200410402
  41. Lee, D. G., H. K. Kim, S. A. Kim, Y. Park, S. C. Park, S. H. Jang, and K. S. Hahm. 2003. Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem. Biophys. Res. Commun. 305: 305-310. https://doi.org/10.1016/S0006-291X(03)00755-1
  42. Lehrer, R. I. and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11: 23-27. https://doi.org/10.1016/S0952-7915(99)80005-3
  43. Liao, R. S., R. P. Rennie, and T. A. Talbot. 1999. Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother. 43: 1034-1041.
  44. Lin, W. J., Y. L. Chien, C. Y. Pan, T. L. Lin, J. Y. Chen, S. J. Chiu, and C. F. Hui. 2009. Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30: 283-290. https://doi.org/10.1016/j.peptides.2008.10.007
  45. Ludtke, S. J., K. He, W. T. Heller, T. A. Harroun, L. Yang, and H. W. Huang. 1996. Membrane pores induced by magainin. Biochemistry 35: 13723-13728. https://doi.org/10.1021/bi9620621
  46. Madeo, F., E. Frohlich, and K. U. Frohlich. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139: 729-734. https://doi.org/10.1083/jcb.139.3.729
  47. Mader, J. S., J. Salsman, D. M. Conrad, and D. W. Hoskin. 2005. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol. Cancer Ther. 4: 1-13. https://doi.org/10.1186/1476-4598-4-1
  48. Maeno, E., Y. Ishizaki, T. Kanaseki, A. Hazama, and Y. Okada. 2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97: 9487-9492. https://doi.org/10.1073/pnas.140216197
  49. Mills, J. C., N. L. Stone, J. Erhardt, and R. N. Pittman. 1998. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J. Cell Biol. 140: 627-636. https://doi.org/10.1083/jcb.140.3.627
  50. Moore, A. J., D. A. Devine, and M. C. Bibby. 1994. Preliminary experimental anticancer activity of cecropins. Pept. Res. 7: 265-269.
  51. Mor, A., K. Hani, and P. Nicolas. 1994. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J. Biol. Chem. 269: 31635-31641.
  52. Morton, C. O., S. C. Dos Santos, and P. Coote. 2007. An amphibian-derived, cationic, alpha-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol. Microbiol. 65: 494-507. https://doi.org/10.1111/j.1365-2958.2007.05801.x
  53. Niyonsaba, F., A. Someya, M. Hirata, H. Ogawa, and I. Nagaoka. 2001. Evaluation of the effects of peptide antibiotics human ${\beta}$-defensins-1/-2 and LL-37 on histamine release and prostaglandin D2 production from mast cells. Eur. J. Immunol. 31: 1066-1075. https://doi.org/10.1002/1521-4141(200104)31:4<1066::AID-IMMU1066>3.0.CO;2-#
  54. Park, C. and D. G. Lee. 2010. Melittin induces apoptotic features in Candida albicans. Biochem. Biophys. Res. Commun. 394: 170-172. https://doi.org/10.1016/j.bbrc.2010.02.138
  55. Park, C. B., M. S. Kim, and S. C. Kim. 1996. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218: 408-413. https://doi.org/10.1006/bbrc.1996.0071
  56. Park, C. B., H. S. Kim, and S. C. Kim. 1998. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244: 253-257. https://doi.org/10.1006/bbrc.1998.8159
  57. Pereira, C., N. Camougrand, S. Manon, M. J. Sousa, and M. Corte-Real. 2007. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol. Microbiol. 66: 571-582. https://doi.org/10.1111/j.1365-2958.2007.05926.x
  58. Pereira, C., R. D. Silva, L. Saraiva, B. Johansson, M. J. Sousa, and M. Corte-Real. 2008. Mitochondria-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1286-1302 https://doi.org/10.1016/j.bbamcr.2008.03.010
  59. Perrone, G. G., S. X. Tan, and I. W. Dawes. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368. https://doi.org/10.1016/j.bbamcr.2008.01.023
  60. Peters, B. M., M. E. Shirtliff, and M. A. Jabra-Rizk. 2010. Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathog. 6: e1001067. https://doi.org/10.1371/journal.ppat.1001067
  61. Petit, P. X., S. A. Susin, N. Zamzami, B. Mignotte, and G. Kroemer. 1996. Mitochondria and programmed cell death: Back to the future. FEBS Lett. 396: 7-13. https://doi.org/10.1016/0014-5793(96)00988-X
  62. Phillips, A. J., I. Sudbery, and M. Ramsdale. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100: 14327-14332. https://doi.org/10.1073/pnas.2332326100
  63. Pouny, Y., D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31: 12416-12423. https://doi.org/10.1021/bi00164a017
  64. Ramachandran, S., L. H. Xie, S. A. John, S. Subramaniam, and R. Lal. 2007. A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One 2: e712. https://doi.org/10.1371/journal.pone.0000712
  65. Rana, M., S. Chatterjee, S. Kochhar, and B. M. J. Pereira. 2006. Antimicrobial peptides: A new dawn for regulating fertility and reproductive tract infections. J. Endocrinol. Reprod. 20: 88-95.
  66. Robinson Jr., W. E., B. McDougall, D. Tran, and M. E. Selsted. 1998. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 63: 94-100.
  67. Rollins-Smith, L. A., L. K. Reinert, C. J. O'Leary, L. E. Houston, and D. C. Woodhams. 2005. Antimicrobial peptide defenses in amphibian skin. Integr. Comp. Biol. 45: 137-142. https://doi.org/10.1093/icb/45.1.137
  68. Sang, Y. and F. Blech. 2008. Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Anim. Health Res. Rev. 9: 227-235. https://doi.org/10.1017/S1466252308001497
  69. Scandalios, J. G. 2002. The rise of ROS. Trends Biochem. Sci. 27: 483-486. https://doi.org/10.1016/S0968-0004(02)02170-9
  70. Selsted, M. E., M. J. Novotny, W. L. Morris, Y. Q. Tang, W. Smith, and J. S. Cullor. 1992. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267: 4292-4295.
  71. Setsukinai, K., Y. Urano, K. Kakinuma, H. J. Majima, and T. Nagano. 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. Biol. Chem. 278: 3170-3175. https://doi.org/10.1074/jbc.M209264200
  72. Shai, Y. 1999. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alphahelical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462: 55-70. https://doi.org/10.1016/S0005-2736(99)00200-X
  73. Shai, Y. and Z. Oren. 2001. From "carpet" mechanism to denovo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22: 1629-1641. https://doi.org/10.1016/S0196-9781(01)00498-3
  74. Silvestro, L., J. N. Weiser, and P. H. Axelsen. 2000. Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Antimicrob. Agents Chemother. 44: 602-607. https://doi.org/10.1128/AAC.44.3.602-607.2000
  75. Sorensen, O. E., P. Follin, A. H. Johnsen, J. Calafat, G. S. Tjabringa, P. S. Hiemstra, and N. Borregaard. 2001. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97: 3951-3959. https://doi.org/10.1182/blood.V97.12.3951
  76. Susin, S. A., H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M. Brothers, et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441-446. https://doi.org/10.1038/17135
  77. Suttmann, H., M. Retz, F. Paulsen, J. Harder, U. Zwergel, J. Kamradt, et al. 2008. Antimicrobial peptides of the Cecropinfamily show potent antitumor activity against bladder cancer cells. BMC Urol. 8: 5. https://doi.org/10.1186/1471-2490-8-5
  78. Torrent, M., D. Andreu, V. M. Nogues, and E. Boix. 2011. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One 6: e16968. https://doi.org/10.1371/journal.pone.0016968
  79. Uren, A. G., K. O'Rourke, L. A. Aravind, M. T. Pisabarro, S. Seshagiri, E. V. Koonin, and V. M. Dixit. 2000. Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6: 961-967.
  80. Utsugi, T., A. J. Schroit, J. Connor, C. D. Bucana, and I. J. Fidler. 1991. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 51: 3062-3066.
  81. Wadskog, I., C. Maldener, A. Proksch, F. Madeo, and L. Adler. 2004. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol. Biol. Cell 15: 1436-1444.
  82. Wang, H. X. and T. B. Ng. 2005. An antifungal peptide from the coconut. Peptides 26: 2392-2396. https://doi.org/10.1016/j.peptides.2005.05.009
  83. Wang, J. Y. 2001. DNA damage and apoptosis. Cell Death Differ. 8: 1047-1048. https://doi.org/10.1038/sj.cdd.4400938
  84. Wang, K. R., B. Z. Zhang, W. Zhang, J. X. Yan, J. Li, and R. Wang. 2008. Antitumor effects, cell selectivity and structure- activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29: 963-968. https://doi.org/10.1016/j.peptides.2008.01.015
  85. Woolley, G. A. and B. A. Wallace. 1993. Temperature dependence of the interaction of alamethicin helices in membranes. Biochemistry 32: 9819-9825. https://doi.org/10.1021/bi00088a037
  86. Wu, M., E. Maier, R. Benz, and R. E. Hancock. 1999. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38: 7235-7242. https://doi.org/10.1021/bi9826299
  87. Yang, D., Q. Chen, A. P. Schmidt, G. M. Anderson, J. M. Wang, and J. J. Wooters. 2000. LL-37, the neutrophil granuleand epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192: 1069-1074. https://doi.org/10.1084/jem.192.7.1069
  88. Yang, L., T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81: 1475-1485. https://doi.org/10.1016/S0006-3495(01)75802-X
  89. Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. https://doi.org/10.1124/pr.55.1.2
  90. Yoo, Y. C., R. Watanabe, Y. Koike, M. Mitobe, K. Shimazaki, S. Watanabe, and I. Azuma. 1997. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: Involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 237: 624-628. https://doi.org/10.1006/bbrc.1997.7199
  91. Zachowski, A. 1993. Phospholipids in animal eukaryotic membranes: Transverse asymmetry and movement. Biochem. J. 294: 1-14.
  92. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395. https://doi.org/10.1038/415389a
  93. Zhang, L., A. Rozek, and R. E. Hancock. 2001. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714-35722. https://doi.org/10.1074/jbc.M104925200
  94. Zivna, L., Z. Krocova, A. Hartlova, K. Kubelkova, J. Zakova, E. Rudolf, et al. 2010. Activation of B cell apoptotic pathways in the course of Francisella tularensis infection. Microb. Pathog. 49: 226-236. https://doi.org/10.1016/j.micpath.2010.06.003

피인용 문헌

  1. Bacteriocins ofBacillus thuringiensiscan expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide vol.59, pp.8, 2013, https://doi.org/10.1139/cjm-2013-0284
  2. Secretory ranalexin produced in recombinantPichia pastorisexhibits additive or synergistic bactericidal activity when used in combination with polymyxin B or linezolid against multi-drug resistant bac vol.9, pp.1, 2014, https://doi.org/10.1002/biot.201300282
  3. Sterol binding by methyl‐β‐cyclodextrin and nystatin?–?comparative analysis of biochemical and physiological consequences for plants vol.281, pp.8, 2012, https://doi.org/10.1111/febs.12761
  4. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases vol.8, pp.2, 2012, https://doi.org/10.3390/ph8020151
  5. Antimicrobial peptides of invertebrates. Part 2. biological functions and mechanisms of action vol.42, pp.4, 2016, https://doi.org/10.1134/s106816201604004x
  6. Mammalian host defense peptides and their implication on combating Leishmania infection vol.309, pp.None, 2012, https://doi.org/10.1016/j.cellimm.2016.10.001
  7. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10 vol.7, pp.None, 2012, https://doi.org/10.1038/srep46541
  8. MSP-4, an Antimicrobial Peptide, Induces Apoptosis via Activation of Extrinsic Fas/FasL- and Intrinsic Mitochondria-Mediated Pathways in One Osteosarcoma Cell Line vol.16, pp.1, 2018, https://doi.org/10.3390/md16010008
  9. Overexpression of antimicrobial peptides contributes to aging through cytotoxic effects in Drosophila tissues vol.98, pp.4, 2012, https://doi.org/10.1002/arch.21464
  10. Bacteriocins: perspective for the development of novel anticancer drugs vol.102, pp.24, 2012, https://doi.org/10.1007/s00253-018-9420-8
  11. Design and activity study of a melittin–thanatin hybrid peptide vol.9, pp.1, 2012, https://doi.org/10.1186/s13568-019-0739-z
  12. Synthesis of N-Alkyl Enamino Ketones Based on 3-Acyl-4H-polyfluorochromen-4-ones and Their Antimicrobial Activity vol.56, pp.9, 2020, https://doi.org/10.1134/s1070428020090171
  13. An Update on Antimicrobial Peptides (AMPs) and Their Delivery Strategies for Wound Infections vol.12, pp.9, 2012, https://doi.org/10.3390/pharmaceutics12090840
  14. A Novel Antimicrobial Peptide Sparamosin26-54 From the Mud Crab Scylla paramamosain Showing Potent Antifungal Activity Against Cryptococcus neoformans vol.12, pp.None, 2012, https://doi.org/10.3389/fmicb.2021.746006
  15. The antimicrobial peptide AsR416 can inhibit the growth, sclerotium formation and virulence of Rhizoctonia solani AG1-IA vol.160, pp.2, 2012, https://doi.org/10.1007/s10658-021-02257-0
  16. Bolaamphiphile-based supramolecular gels with drugs eliciting membrane effects vol.594, pp.None, 2021, https://doi.org/10.1016/j.jcis.2021.03.026