Acknowledgement
Grant : Cooperative Research Program for Agriculture Science & Technology Development
Supported by : Rural Development Administration
References
-
Aarbiou, J., G. S. Tjabringa, R. M. Verhoosel, D. K. Ninaber, S. R. White, L. T. Peltenburg, et al. 2006. Mechanisms of cell death induced by the neutrophil antimicrobial peptides
${\alpha}$ -defensins and LL-37. Inflamm. Res. 55: 119-127. https://doi.org/10.1007/s00011-005-0062-9 - Aerts, A. M., D. Carmona-Gutierrez, S. Lefevre, G. Govaert, I. E. François, F. Madeo, et al. 2009. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 583: 2513-2516. https://doi.org/10.1016/j.febslet.2009.07.004
-
Andres, M. T., M. Viejo-Díaz, and J. F. Fierro. 2008. Human lactoferrin induces apoptosis-like cell death in Candida albicans: Critical role of
$K^+$ -channel-mediated$K^+$ efflux. Antimicrob. Agents Chemother. 52: 4081-4088. https://doi.org/10.1128/AAC.01597-07 - Bak, M., R. P. Bywater, M. Hohwy, J. K. Thomsen, K. Adelhorst, H. J. Jakobsen, et al. 2001. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance. Biophys. J. 81: 1684-1698. https://doi.org/10.1016/S0006-3495(01)75822-5
- Barroso, G., S. Taylor, M. Morshedi, F. Manzur, F. Gavino, and S. Oehninger. 2006. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: A comparison of two different sperm subpopulations. Fertil. Steril. 85: 149-154. https://doi.org/10.1016/j.fertnstert.2005.06.046
- Bechinger, B. 1999. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solidstate NMR spectroscopy. Biochim. Biophys. Acta 1462: 157-183. https://doi.org/10.1016/S0005-2736(99)00205-9
- Benaroudj, N., D. H. Lee, and A. L. Goldberg. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276: 24261-24267. https://doi.org/10.1074/jbc.M101487200
- Boman, H. G. and D. Hultmark. 1987. Cell-free immunity in insects. Annu. Rev. Microbiol. 41: 103-126. https://doi.org/10.1146/annurev.mi.41.100187.000535
- Bortner, C. D. and J. A. Cidlowski. 2002. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ. 9: 1307-1310. https://doi.org/10.1038/sj.cdd.4401126
- Bortner, C. D. and J. A. Cidlowski. 2007. Cell shrinkage and monovalent cation fluxes: Role in apoptosis. Arch. Biochem. Biophys. 462: 176-188. https://doi.org/10.1016/j.abb.2007.01.020
- Broekaert, W. F., F. R. Terras, B. P. Cammue, and R. W. Osborn. 1995. Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108: 1353-1358. https://doi.org/10.1104/pp.108.4.1353
- Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250. https://doi.org/10.1038/nrmicro1098
- Burhans, W. C., M. Weinberger, M. A. Marchetti, L. Ramachandran, J. A. D'Urso, and G. Huberman. 2003. Apoptosis like yeast cell death in response to DNA damage and replication defects. Mutat. Res. 532: 227-243. https://doi.org/10.1016/j.mrfmmm.2003.08.019
- Cantor, R. S. 2002. Size distribution of barrel-stave aggregates of membrane peptides: Influence of the bilayer lateral pressure profile. Biophys. J. 82: 2520-2525. https://doi.org/10.1016/S0006-3495(02)75595-1
- Ceron, J. M., J. Contreras-Moreno, E. Puertollano, G. A. de Cienfuegos, M. A. Puertollano, and M. A. de Pablo. 2010. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells. Peptides 31: 1494-1503. https://doi.org/10.1016/j.peptides.2010.05.008
- Chan, S. C., L. Hui, and H. M. Chen. 1998. Enhancement of the cytolytic effect of antibacterial cecropin by the microvilli of cancer cells. Anticancer Res. 18: 4467-4474.
- Chen, H. M., W. Wang, D. Smith, and S. C. Chan. 1997. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim. Biophys. Acta 1336: 171-179. https://doi.org/10.1016/S0304-4165(97)00024-X
- Chiu, D., B. Lubin, and S. B. Shohet. 1979. Erythrocyte membrane lipid reorganization during the sickling process. Br. J. Haematol. 41: 223-234. https://doi.org/10.1111/j.1365-2141.1979.tb05851.x
- Cho, J. and D. G. Lee. 2011. Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie 93: 1873-1879. https://doi.org/10.1016/j.biochi.2011.07.011
- Cruciani, R. A., J. L. Barker, M. Zasloff, H. C. Chen, and O. Colamonici. 1991. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc. Natl. Acad. Sci. USA 88: 3792-3796. https://doi.org/10.1073/pnas.88.9.3792
- Dussmann, H., M. Rehm, D. Kogel, and J. H. Prehn. 2003. Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: A single-cell analysis. J. Cell Sci. 116: 525-536. https://doi.org/10.1242/jcs.00236
- Eisenberg, T., S. Buttner, G. Kroemer, and F. Madeo. 2007. The mitochondrial pathway in yeast apoptosis. Apoptosis 12: 1011-1023. https://doi.org/10.1007/s10495-007-0758-0
- Er, E., L. Oliver, P. F. Cartron, P. Juin, S. Manon, and F. M. Vallette. 2006. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim. Biophys. Acta 1757: 1301-1311. https://doi.org/10.1016/j.bbabio.2006.05.032
- Farnaud, S. and R. W. Evans. 2003. Lactoferrin - a multifunctional protein with antimicrobial properties. Mol. Immunol. 40: 395-405. https://doi.org/10.1016/S0161-5890(03)00152-4
- Fehlbaum, P., P. Bulet, S. Chernysh, J. P. Briand, J. P. Roussel, L. Letellier, et al. 1996. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93: 1221-1225. https://doi.org/10.1073/pnas.93.3.1221
- Franco, R., C. D. Bortner, and J. A. Cidlowski. 2006. Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis. J. Membr. Biol. 209: 43-58. https://doi.org/10.1007/s00232-005-0837-5
- Furlong, S. J., J. S. Mader, and D. W. Hoskin. 2006. Lactoferricininduced apoptosis in estrogen-non-responsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen. Oncol. Rep. 15: 1385-1390.
- Gudmundsson, G. H., B. Agerberth, J. Odeberg, T. Bergman, B. Olsson, and R. Salcedo. 1996. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 238: 325-332. https://doi.org/10.1111/j.1432-1033.1996.0325z.x
- Hale, J. D. and R. E. Hancock. 2007. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 5: 951-959. https://doi.org/10.1586/14787210.5.6.951
- Hancock, R. E. and H. G. Sahl. 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557. https://doi.org/10.1038/nbt1267
- Heiskanen, K. M., M. B. Bhat, H. W. Wang, J. Ma, and A. L. Nieminen. 1999. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J. Biol. Chem. 274: 5654-5658. https://doi.org/10.1074/jbc.274.9.5654
- Horton, K. L., K. M. Stewart, S. B. Fonseca, Q. Guo, and S. O. Kelley. 2008. Mitochondria-penetrating peptides. Chem. Biol. 15: 375-382. https://doi.org/10.1016/j.chembiol.2008.03.015
- Hoskin, D. W. and A. Ramamoorthy. 2007. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778: 357-375.
- Hsu, C. H., C. Chen, M. L. Jou, A. Y. Lee, Y. C. Lin, Y. P. Yu, et al. 2005. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 33: 4053-4064. https://doi.org/10.1093/nar/gki725
- Hwang, B., J. S. Hwang, J. Lee, and D. G. Lee. 2011. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem. Biophys. Res. Commun. 405: 267-271. https://doi.org/10.1016/j.bbrc.2011.01.026
- Hwang, B., J. S. Hwang, J. Lee, J. K. Kim, S. R. Kim, Y. Kim, and D. G. Lee. 2011. Induction of yeast apoptosis by an antimicrobial peptide, papiliocin. Biochem. Biophys. Res. Commun. 408: 89-93. https://doi.org/10.1016/j.bbrc.2011.03.125
- Hwang, J. S., J. Lee, B. Hwang, S. H. Nam, E. Y. Yun, S. R. Kim, and D. G. Lee. 2010. Isolation and characterization of psacotheasin, a novel knottin-type antimicrobial peptide, from Psacothea hilaris. J. Microbiol. Biotechnol. 20: 708-711. https://doi.org/10.4014/jmb.1002.02003
- Jin, X., H. Mei, X. Li, Y. Ma, A. H. Zeng, Y. Wang, et al. 2010. Apoptosis-inducing activity of the antimicrobial peptide cecropin of Musca domestica in human hepatocellular carcinoma cell line BEL-7402 and the possible mechanism. Acta Biochim. Biophys. Sin. 42: 259-265. https://doi.org/10.1093/abbs/gmq021
- Kapuscinski, J. 1995. DAPI: A DNA-specific fluorescent probe. Biotech. Histochem. 70: 220-233. https://doi.org/10.3109/10520299509108199
- Kataoka, M., Y. Fukura, Y. Shinohara, and Y. Baba. 2005. Analysis of mitochondrial membrane potential in the cells by microchip flow cytometry. Electrophoresis 26: 3025-3031. https://doi.org/10.1002/elps.200410402
- Lee, D. G., H. K. Kim, S. A. Kim, Y. Park, S. C. Park, S. H. Jang, and K. S. Hahm. 2003. Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem. Biophys. Res. Commun. 305: 305-310. https://doi.org/10.1016/S0006-291X(03)00755-1
- Lehrer, R. I. and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11: 23-27. https://doi.org/10.1016/S0952-7915(99)80005-3
- Liao, R. S., R. P. Rennie, and T. A. Talbot. 1999. Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother. 43: 1034-1041.
- Lin, W. J., Y. L. Chien, C. Y. Pan, T. L. Lin, J. Y. Chen, S. J. Chiu, and C. F. Hui. 2009. Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30: 283-290. https://doi.org/10.1016/j.peptides.2008.10.007
- Ludtke, S. J., K. He, W. T. Heller, T. A. Harroun, L. Yang, and H. W. Huang. 1996. Membrane pores induced by magainin. Biochemistry 35: 13723-13728. https://doi.org/10.1021/bi9620621
- Madeo, F., E. Frohlich, and K. U. Frohlich. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139: 729-734. https://doi.org/10.1083/jcb.139.3.729
- Mader, J. S., J. Salsman, D. M. Conrad, and D. W. Hoskin. 2005. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol. Cancer Ther. 4: 1-13. https://doi.org/10.1186/1476-4598-4-1
- Maeno, E., Y. Ishizaki, T. Kanaseki, A. Hazama, and Y. Okada. 2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97: 9487-9492. https://doi.org/10.1073/pnas.140216197
- Mills, J. C., N. L. Stone, J. Erhardt, and R. N. Pittman. 1998. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J. Cell Biol. 140: 627-636. https://doi.org/10.1083/jcb.140.3.627
- Moore, A. J., D. A. Devine, and M. C. Bibby. 1994. Preliminary experimental anticancer activity of cecropins. Pept. Res. 7: 265-269.
- Mor, A., K. Hani, and P. Nicolas. 1994. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J. Biol. Chem. 269: 31635-31641.
- Morton, C. O., S. C. Dos Santos, and P. Coote. 2007. An amphibian-derived, cationic, alpha-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol. Microbiol. 65: 494-507. https://doi.org/10.1111/j.1365-2958.2007.05801.x
-
Niyonsaba, F., A. Someya, M. Hirata, H. Ogawa, and I. Nagaoka. 2001. Evaluation of the effects of peptide antibiotics human
${\beta}$ -defensins-1/-2 and LL-37 on histamine release and prostaglandin D2 production from mast cells. Eur. J. Immunol. 31: 1066-1075. https://doi.org/10.1002/1521-4141(200104)31:4<1066::AID-IMMU1066>3.0.CO;2-# - Park, C. and D. G. Lee. 2010. Melittin induces apoptotic features in Candida albicans. Biochem. Biophys. Res. Commun. 394: 170-172. https://doi.org/10.1016/j.bbrc.2010.02.138
- Park, C. B., M. S. Kim, and S. C. Kim. 1996. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218: 408-413. https://doi.org/10.1006/bbrc.1996.0071
- Park, C. B., H. S. Kim, and S. C. Kim. 1998. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244: 253-257. https://doi.org/10.1006/bbrc.1998.8159
- Pereira, C., N. Camougrand, S. Manon, M. J. Sousa, and M. Corte-Real. 2007. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol. Microbiol. 66: 571-582. https://doi.org/10.1111/j.1365-2958.2007.05926.x
- Pereira, C., R. D. Silva, L. Saraiva, B. Johansson, M. J. Sousa, and M. Corte-Real. 2008. Mitochondria-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1286-1302 https://doi.org/10.1016/j.bbamcr.2008.03.010
- Perrone, G. G., S. X. Tan, and I. W. Dawes. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368. https://doi.org/10.1016/j.bbamcr.2008.01.023
- Peters, B. M., M. E. Shirtliff, and M. A. Jabra-Rizk. 2010. Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathog. 6: e1001067. https://doi.org/10.1371/journal.ppat.1001067
- Petit, P. X., S. A. Susin, N. Zamzami, B. Mignotte, and G. Kroemer. 1996. Mitochondria and programmed cell death: Back to the future. FEBS Lett. 396: 7-13. https://doi.org/10.1016/0014-5793(96)00988-X
- Phillips, A. J., I. Sudbery, and M. Ramsdale. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100: 14327-14332. https://doi.org/10.1073/pnas.2332326100
- Pouny, Y., D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31: 12416-12423. https://doi.org/10.1021/bi00164a017
- Ramachandran, S., L. H. Xie, S. A. John, S. Subramaniam, and R. Lal. 2007. A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One 2: e712. https://doi.org/10.1371/journal.pone.0000712
- Rana, M., S. Chatterjee, S. Kochhar, and B. M. J. Pereira. 2006. Antimicrobial peptides: A new dawn for regulating fertility and reproductive tract infections. J. Endocrinol. Reprod. 20: 88-95.
- Robinson Jr., W. E., B. McDougall, D. Tran, and M. E. Selsted. 1998. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 63: 94-100.
- Rollins-Smith, L. A., L. K. Reinert, C. J. O'Leary, L. E. Houston, and D. C. Woodhams. 2005. Antimicrobial peptide defenses in amphibian skin. Integr. Comp. Biol. 45: 137-142. https://doi.org/10.1093/icb/45.1.137
- Sang, Y. and F. Blech. 2008. Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Anim. Health Res. Rev. 9: 227-235. https://doi.org/10.1017/S1466252308001497
- Scandalios, J. G. 2002. The rise of ROS. Trends Biochem. Sci. 27: 483-486. https://doi.org/10.1016/S0968-0004(02)02170-9
- Selsted, M. E., M. J. Novotny, W. L. Morris, Y. Q. Tang, W. Smith, and J. S. Cullor. 1992. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267: 4292-4295.
- Setsukinai, K., Y. Urano, K. Kakinuma, H. J. Majima, and T. Nagano. 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. Biol. Chem. 278: 3170-3175. https://doi.org/10.1074/jbc.M209264200
- Shai, Y. 1999. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alphahelical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462: 55-70. https://doi.org/10.1016/S0005-2736(99)00200-X
- Shai, Y. and Z. Oren. 2001. From "carpet" mechanism to denovo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22: 1629-1641. https://doi.org/10.1016/S0196-9781(01)00498-3
- Silvestro, L., J. N. Weiser, and P. H. Axelsen. 2000. Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Antimicrob. Agents Chemother. 44: 602-607. https://doi.org/10.1128/AAC.44.3.602-607.2000
- Sorensen, O. E., P. Follin, A. H. Johnsen, J. Calafat, G. S. Tjabringa, P. S. Hiemstra, and N. Borregaard. 2001. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97: 3951-3959. https://doi.org/10.1182/blood.V97.12.3951
- Susin, S. A., H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M. Brothers, et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441-446. https://doi.org/10.1038/17135
- Suttmann, H., M. Retz, F. Paulsen, J. Harder, U. Zwergel, J. Kamradt, et al. 2008. Antimicrobial peptides of the Cecropinfamily show potent antitumor activity against bladder cancer cells. BMC Urol. 8: 5. https://doi.org/10.1186/1471-2490-8-5
- Torrent, M., D. Andreu, V. M. Nogues, and E. Boix. 2011. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One 6: e16968. https://doi.org/10.1371/journal.pone.0016968
- Uren, A. G., K. O'Rourke, L. A. Aravind, M. T. Pisabarro, S. Seshagiri, E. V. Koonin, and V. M. Dixit. 2000. Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6: 961-967.
- Utsugi, T., A. J. Schroit, J. Connor, C. D. Bucana, and I. J. Fidler. 1991. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 51: 3062-3066.
- Wadskog, I., C. Maldener, A. Proksch, F. Madeo, and L. Adler. 2004. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol. Biol. Cell 15: 1436-1444.
- Wang, H. X. and T. B. Ng. 2005. An antifungal peptide from the coconut. Peptides 26: 2392-2396. https://doi.org/10.1016/j.peptides.2005.05.009
- Wang, J. Y. 2001. DNA damage and apoptosis. Cell Death Differ. 8: 1047-1048. https://doi.org/10.1038/sj.cdd.4400938
- Wang, K. R., B. Z. Zhang, W. Zhang, J. X. Yan, J. Li, and R. Wang. 2008. Antitumor effects, cell selectivity and structure- activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29: 963-968. https://doi.org/10.1016/j.peptides.2008.01.015
- Woolley, G. A. and B. A. Wallace. 1993. Temperature dependence of the interaction of alamethicin helices in membranes. Biochemistry 32: 9819-9825. https://doi.org/10.1021/bi00088a037
- Wu, M., E. Maier, R. Benz, and R. E. Hancock. 1999. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38: 7235-7242. https://doi.org/10.1021/bi9826299
- Yang, D., Q. Chen, A. P. Schmidt, G. M. Anderson, J. M. Wang, and J. J. Wooters. 2000. LL-37, the neutrophil granuleand epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192: 1069-1074. https://doi.org/10.1084/jem.192.7.1069
- Yang, L., T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81: 1475-1485. https://doi.org/10.1016/S0006-3495(01)75802-X
- Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. https://doi.org/10.1124/pr.55.1.2
- Yoo, Y. C., R. Watanabe, Y. Koike, M. Mitobe, K. Shimazaki, S. Watanabe, and I. Azuma. 1997. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: Involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 237: 624-628. https://doi.org/10.1006/bbrc.1997.7199
- Zachowski, A. 1993. Phospholipids in animal eukaryotic membranes: Transverse asymmetry and movement. Biochem. J. 294: 1-14.
- Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395. https://doi.org/10.1038/415389a
- Zhang, L., A. Rozek, and R. E. Hancock. 2001. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714-35722. https://doi.org/10.1074/jbc.M104925200
- Zivna, L., Z. Krocova, A. Hartlova, K. Kubelkova, J. Zakova, E. Rudolf, et al. 2010. Activation of B cell apoptotic pathways in the course of Francisella tularensis infection. Microb. Pathog. 49: 226-236. https://doi.org/10.1016/j.micpath.2010.06.003
Cited by
- Bacteriocins ofBacillus thuringiensiscan expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide vol.59, pp.8, 2013, https://doi.org/10.1139/cjm-2013-0284
- Secretory ranalexin produced in recombinantPichia pastorisexhibits additive or synergistic bactericidal activity when used in combination with polymyxin B or linezolid against multi-drug resistant bac vol.9, pp.1, 2014, https://doi.org/10.1002/biot.201300282
- Sterol binding by methyl‐β‐cyclodextrin and nystatin?–?comparative analysis of biochemical and physiological consequences for plants vol.281, pp.8, 2012, https://doi.org/10.1111/febs.12761
- Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases vol.8, pp.2, 2012, https://doi.org/10.3390/ph8020151
- Antimicrobial peptides of invertebrates. Part 2. biological functions and mechanisms of action vol.42, pp.4, 2016, https://doi.org/10.1134/s106816201604004x
- Mammalian host defense peptides and their implication on combating Leishmania infection vol.309, pp.None, 2012, https://doi.org/10.1016/j.cellimm.2016.10.001
- Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10 vol.7, pp.None, 2012, https://doi.org/10.1038/srep46541
- MSP-4, an Antimicrobial Peptide, Induces Apoptosis via Activation of Extrinsic Fas/FasL- and Intrinsic Mitochondria-Mediated Pathways in One Osteosarcoma Cell Line vol.16, pp.1, 2018, https://doi.org/10.3390/md16010008
- Overexpression of antimicrobial peptides contributes to aging through cytotoxic effects in Drosophila tissues vol.98, pp.4, 2012, https://doi.org/10.1002/arch.21464
- Bacteriocins: perspective for the development of novel anticancer drugs vol.102, pp.24, 2012, https://doi.org/10.1007/s00253-018-9420-8
- Design and activity study of a melittin–thanatin hybrid peptide vol.9, pp.1, 2012, https://doi.org/10.1186/s13568-019-0739-z
- Synthesis of N-Alkyl Enamino Ketones Based on 3-Acyl-4H-polyfluorochromen-4-ones and Their Antimicrobial Activity vol.56, pp.9, 2020, https://doi.org/10.1134/s1070428020090171
- An Update on Antimicrobial Peptides (AMPs) and Their Delivery Strategies for Wound Infections vol.12, pp.9, 2012, https://doi.org/10.3390/pharmaceutics12090840
- A Novel Antimicrobial Peptide Sparamosin26-54 From the Mud Crab Scylla paramamosain Showing Potent Antifungal Activity Against Cryptococcus neoformans vol.12, pp.None, 2012, https://doi.org/10.3389/fmicb.2021.746006
- The antimicrobial peptide AsR416 can inhibit the growth, sclerotium formation and virulence of Rhizoctonia solani AG1-IA vol.160, pp.2, 2012, https://doi.org/10.1007/s10658-021-02257-0
- Bolaamphiphile-based supramolecular gels with drugs eliciting membrane effects vol.594, pp.None, 2021, https://doi.org/10.1016/j.jcis.2021.03.026