DOI QR코드

DOI QR Code

Proteomic Analysis of Proteins of Weissella confusa 31 Affected by Bile Salts

  • Lee, Kang Wook (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Lee, Seung-Gyu (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Han, Nam Soo (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University) ;
  • Kim, Jeong-Hwan (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University)
  • Received : 2012.03.29
  • Accepted : 2012.06.11
  • Published : 2012.10.28

Abstract

Weissella confusa 31, an isolate from human feces, possesses desirable properties as a probiotic strain, including bile salt resistance. W. confusa 31 is not inhibited by bile salts up to 0.3% concentration. Proteins affected by bile salts (0.05%) were examined by 2-D gel electrophoresis. Our proteomic analyses revealed that the intensities of 29 spots were changed, where 17 increased (including 2 spots observed only under the bile salts stress conditions) and 12 decreased. Proteins were identified by MALDI-TOF mass spectrometry. Proteins increased in the band intensities included adenylate kinase (12.75-fold increase), Clp-like ATP-dependent protease (11.91-fold), 6-phosphogluconate dehydrogenase (10.35-fold), and HSP 70 (5.07-fold). Some of the increased or decreased proteins are also known to be involved in other types of stress responses.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Amari, M., S. Laguerre, M. Vuillemin, H. Robert, V. Loux, C. Klopp, et al. 2012. Genome sequence of Weissella confusa LBAE C39-2, isolated from a wheat sourdough. J. Bacteriol. 194: 1608-1609. https://doi.org/10.1128/JB.06788-11
  2. Arahal, D. R., E. Sanchez, M. C. Macian, and E. Garay. 2008. Value of recN sequences for species identification and as a phylogenetic marker within the family "Leuconostocaceae". Int. Microbiol. 11: 33-39.
  3. Baker, D. A. and J. M. Kelly. 2004. Structure, function and evolution of microbial adenylyl and guanylyl cyclases. Mol. Microbiol. 52: 1229-1242. https://doi.org/10.1111/j.1365-2958.2004.04067.x
  4. Bradford, M. M. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cho, J.-H., D.-Y. Lee, C.-N. Yang, J.-I. Jeon, J.-H. Kim, and H.- U. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267. https://doi.org/10.1111/j.1574-6968.2006.00186.x
  6. Chun, J., G. M. Kim, K. W. Lee, I. D. Choi, G. H. Kwon, J. Y. Park, et al. 2007. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. J. Food Sci. 72: M39-M44. https://doi.org/10.1111/j.1750-3841.2007.00276.x
  7. Figge, R. M., A. V. Divakaruni, and J. W. Gober. 2004. MreB, the cell shape-determining bacterial actin homologue, coordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol. 51: 1321-1332. https://doi.org/10.1111/j.1365-2958.2003.03936.x
  8. Figueroa-Gonzalez, I., G. Quijano, G. Ramirez, and A. Cruz-Guerrero. 2011. Probiotics and prebiotics - perspectives and challenges. J. Sci. Food Agric. 91: 1341-1348. https://doi.org/10.1002/jsfa.4367
  9. Frees, D., K. Savijoki, P. Varmanen, and H. Ingmer. 2007. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol. Microbiol. 63: 1285-1295. https://doi.org/10.1111/j.1365-2958.2007.05598.x
  10. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  11. Gaggìa, F., P. Mattarelli, and B. Biavati. 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 141: 513-528.
  12. Gottschalk, G. 1986. Bacterial Metabolism, pp. 220-221, 2nd Ed. Springer-Verlag, New York.
  13. Hamon, E., P. Horvatovich, E. Izquierdo, F. Bringel, E. Marchioni, D. A.-Werner, and S. Ennahar. 2011. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol. 11: 63. https://doi.org/10.1186/1471-2180-11-63
  14. Itoh, M., K. Wada, S. Tan, Y. Kitano, J. Kai, and I. Makino. 1999. Antibacterial action of bile acids against Helicobacter pylori and changes in its ultrastructural morphology: Effect of unconjugated dihydroxy bile acid. J. Gastroenterol. 34: 571-576. https://doi.org/10.1007/s005350050374
  15. Jenkins, D. E., J. E. Schultz, and A. Matin. 1988. Starvationinduced cross protection against heat or $H_2O_2$ challenge in Escherichia coli. J. Bacteriol. 170: 3910-3914.
  16. Jones, L. J., R. Carballido-Lopez, and J. Errington. 2001. Control of cell shape in bacteria: Helical, actin-like filaments in Bacillus subtilis. Cell 104: 913-922. https://doi.org/10.1016/S0092-8674(01)00287-2
  17. Kim, D. S., S. H. Choi, D. W. Kim, S. H. Nam, R. N. Kim, A. Kang, et al. 2011. Genome sequence of Weissella cibaria KACC 11862. J. Bacteriol. 193: 797-798. https://doi.org/10.1128/JB.01342-10
  18. Kim, M.-J. and J.-S. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91-96. https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  19. Koebmann, B. J., D. Nilsson, O. P. Kuipers, and P. R. Jensen. 2000. The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis. J. Bacteriol. 182: 4738-4743. https://doi.org/10.1128/JB.182.17.4738-4743.2000
  20. Lee, K. W., J. Y. Park, H. R. Jeong, H. J. Heo, N. S. Han, and J. H. Kim. 2012. Probiotic properties of Weissella strains isolated from human faeces. Anaerobe 18: 96-102. https://doi.org/10.1016/j.anaerobe.2011.12.015
  21. Lee, S. G., K. W. Lee, T. H. Park, J. Y. Park, N. S. Han, and J. H. Kim. 2012. Proteomic analysis of proteins increased or reduced by ethanol of Lactobacillus plantarum ST4 isolated from makgeolli, traditional Korean rice wine. J. Microbiol. Biotechnol. 22: 516-525. https://doi.org/10.4014/jmb.1109.09012
  22. Neves, S. R., T. R. Prahlad, and R. Iyengar. 2002. G Protein pathways. Science 296: 1636-1639. https://doi.org/10.1126/science.1071550
  23. O'Connell, K. L. and J. T. Stults. 1997. Identification of mouse liver proteins on two-dimensional electrophoresis gel by matrixassisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis 18: 349-359. https://doi.org/10.1002/elps.1150180309
  24. Park, J. A., G.-Y. Heo, J. S. Lee, Y. J. Oh, B. Y. Kim, T. I. Mheen, et al. 2003. Change of microbial communities in kimchi fermentation at low temperature. Kor. J. Microbiol. 39: 45-50.
  25. Rince, A., L. B. Yoann, N. Verneuil, J.-C. Giard, A. Hartke, and Y. Auffray. 2003. Physiological and molecular aspects of bile salt response in Enterococcus faecalis. Int. J. Food Microbiol. 88: 207-213. https://doi.org/10.1016/S0168-1605(03)00182-X
  26. Rosberg-Cody, E., A. Liavonchanka, C. Gobel, R. P. Ross, O. O'Sullivan, G. F. Fitzgerald, et al. 2011. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FADdependent fatty acid hydratase which has a function in stress protection. BMC Biochem. 12: 9. https://doi.org/10.1186/1471-2091-12-9
  27. Sanchez, B., M. C. Champomier-Verges, P. Anglade, F. Baraige, C. Reyes-Gavilan, A. Margolles, and M. Zagorec. 2005. Proteomic analysis of global changes in protein expression during bile salts exposure of Bifidobacterium longum NCIMB 8809. J. Bacteriol. 187: 5799-5808. https://doi.org/10.1128/JB.187.16.5799-5808.2005
  28. Sanchez, B., C. G. de los Reyes-Gavilanm, and A. Margolles. 2006. The $F_1F_0$-ATPase of Bifidobacterium animalis is involved in bile tolerance. Environ. Microbiol. 8: 1825-1833. https://doi.org/10.1111/j.1462-2920.2006.01067.x
  29. Volkov, A., A. Liavonchanka, O. Kamneva, T. Fiedler, C. Goebel, B. Kreikemeyer, and I. Feussner. 2010. Myosin crossreactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J. Biol. Chem. 285: 10353-10361. https://doi.org/10.1074/jbc.M109.081851
  30. Wickner, S., J. Hoskins, and K. McKenney. 1991. Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature 350: 165-167. https://doi.org/10.1038/350165a0

Cited by

  1. Synergistic Effect of Oleanolic Acid on Aminoglycoside Antibiotics against Acinetobacter baumannii vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137751