DOI QR코드

DOI QR Code

Construction of a Thermotolerant Saccharomyces cerevisiae Strain for Bioethanol Production with Reduced Fermentation Time and Saccharifying Enzyme Dose

  • Lim, Ji Sung (Department of Bioscience and Biotechnology, The University of Suwon) ;
  • Jang, You Ri (Department of Bioscience and Biotechnology, The University of Suwon) ;
  • Lim, Young Hoon (Department of Bioscience and Biotechnology, The University of Suwon) ;
  • Kim, Keun (Department of Bioscience and Biotechnology, The University of Suwon)
  • Received : 2012.03.29
  • Accepted : 2012.06.20
  • Published : 2012.10.28

Abstract

A thermotolerant Saccharomyces cerevisiae mutant strain, TT6, was constructed after multi-parental hybridization of five mutant strains obtained by UV or NTG treatment of the original strain, S. cerevisiae KV1. When incubated at $40^{\circ}C$ in YPD broth, TT6 began to grow exponentially in 10 h, but KV1 did not show any noticeable growth even after 22 h. The thermotolerant growth of TT6 was confirmed by serial dilution assay at $42^{\circ}C$; TT6 grew at a cell concentration ($10^{-5}$) 10,000 times lower than that of KV1 ($10^{-1}$). Whereas ethanol production from YP containing 23% (w/v) glucose by KV1 decreased with increasing temperature from $30^{\circ}C$ to $36^{\circ}C$, ethanol production by TT6 did not decrease at temperatures up to $37^{\circ}C$. When TT6 was tested for ethanol production at $36^{\circ}C$ by simultaneous saccharification and fermentation (SSF) from 23% corn, 24 h of fermentation time or 50% of the glucoamylase dose was saved when compared with KV1 at $30^{\circ}C$. The ethanol yield from corn by SSF with TT6 at $36^{\circ}C$ was 91.7% of the theoretical yield, whereas that of KV1 at $30^{\circ}C$ was 90.6%.

Keywords

References

  1. Abdel-Fattah, W. R., M. Fadil, P. Nigam, and I. M. Banat. 2000. Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnol. Bioeng. 68: 531-535. https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<531::AID-BIT7>3.0.CO;2-Y
  2. Alexandre, H., V. Ansanay-Galeote, S. Dequin, and B. Blondin. 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498: 98-103. https://doi.org/10.1016/S0014-5793(01)02503-0
  3. Babiker, M. A. A., H. Hoshida, A. Ano, S. Nonklang, and R. Akada. 2010. High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? J. Appl. Microbiol. Biotechnol. 85: 861-867. https://doi.org/10.1007/s00253-009-2248-5
  4. Bai, F. W., W. A. Anderson, and M. Moo-Young. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26: 89-105. https://doi.org/10.1016/j.biotechadv.2007.09.002
  5. D'Amore, T., G. Celotto, I. Russell, and G. G. Stewart. 1989. Selection and optimization of yeast suitable for ethanol production at $40^{\circ}C$. Enzyme Microb. Technol. 11: 411-416. https://doi.org/10.1016/0141-0229(89)90135-X
  6. Edgardo E., P. Carolina, R. Manuel, F. Juanita, and B. Jaime. 2008. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb. Technol. 43: 120-123. https://doi.org/10.1016/j.enzmictec.2008.02.007
  7. Hacking, A. J., I. W. F. Taylor, and C. M. Hanas. 1984. Selection of yeast able to produce ethanol from glucose at $40^{\circ}C$. Appl. Microbiol. Biotechnol. 19: 361-363.
  8. Hari Krishna, S., T. Janardhan Reddy, and G. V. Chowdary. 2001. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour. Technol. 77: 193-196. https://doi.org/10.1016/S0960-8524(00)00151-6
  9. Hou, L. 2010. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160: 1084-1093. https://doi.org/10.1007/s12010-009-8552-9
  10. Hughes, D. B., N. J. Tudroszen, and C. J. Moye. 1984. The effect of temperature on the kinetics of ethanol production by a thermotolerant strain of Kluyveromyces marxianus. Biotechnol. Lett. 6: 1-6. https://doi.org/10.1007/BF00128221
  11. Jimenez, J. and T. Benitez. 1987. Genetic analysis of highly ethanol-tolerant wine yeasts. Curr. Genet. 12: 421-428. https://doi.org/10.1007/BF00434819
  12. Kim, M.-S. and K. Kim. 2000. Protoplast fusion of Saccharomyces and Kluyveromyces to develop thermotolerant ethanol-producing yeast strains. Kor. J. Appl. Microbiol. Biotechnol. 28: 80-86.
  13. Miller, G. L. 1959. Determination of reducing sugar by DNS method. Anal. Chem. 31: 426-429. https://doi.org/10.1021/ac60147a030
  14. Ohta, K., S. C. Wijeyaratne, and S. Hayashida. 1988. Temperaturesensitive mutants of a thermotolerant yeast, Hansenula polymorpha. J. Ferment. Technol. 66: 455-459. https://doi.org/10.1016/0385-6380(88)90014-3
  15. Shahsavarani, H., M. Sugiyama, Y. Kaneko, B. Chuenchit, and S. Harashima. 2011. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol. Adv. http://dx.doi.org/10.1016/j.biotechadv.2011.09.002.
  16. Shi, D., C. Wang, and K. Wang. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36: 139-147. https://doi.org/10.1007/s10295-008-0481-z
  17. Sridhar, M., N. K. Sree, and L. V. Rao. 2002. Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS2 strains. Bioresour. Technol. 83: 199-202. https://doi.org/10.1016/S0960-8524(01)00221-8
  18. Verma, G., P. Nigam, D. Singh, and K. Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72: 261-266. https://doi.org/10.1016/S0960-8524(99)00117-0
  19. Vu, V. H. and K. Kim. 2009. Ethanol production from rice winery waste-rice wine cake by simultaneous saccharification and fermentation without cooking. J. Microbiol. Biotechnol. 19: 1161-1168.
  20. Wingren, A., M. Galbe, and G. Zacchi. 2003. Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Prog. 19: 1109-1117.
  21. Zaldivar, J., J. Nielsen, and O. Olson. 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Biochem. Biotechnol. 56: 17-34.
  22. Zheng, D.-Q., X.-C. Wu, X.-L. Tao, P.-M. Wang, P. Li, X.-Q. Chi, et al. 2011. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour. Technol. 102: 3020-3027. https://doi.org/10.1016/j.biortech.2010.09.122