DOI QR코드

DOI QR Code

초음파를 이용한 As(III) 산화 시 조사 거리/부피의 영향

The Effect of Irradiation Distance/Volume on Sonochemical Oxidation of Arsenite

  • 김은경 (고려대학교 건축사회환경공학과) ;
  • 손영규 (울산발전연구원 도시환경연구실) ;
  • 최명찬 (고려대학교 건축사회환경공학과) ;
  • 김지형 (고려대학교 건축사회환경공학과)
  • Kim, Eunkyung (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Son, Younggyu (Department of Urban Environment, Ulsan Development Institute) ;
  • Cui, Mingcan (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Khim, Jeehyeong (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 투고 : 2012.04.02
  • 심사 : 2012.04.26
  • 발행 : 2012.04.30

초록

본 연구는 초음파 공정에서 주파수가 OH 라디칼 생성량에 미치는 영향을 알아보고 OH 라디칼의 생성량이 가장 많은 주파수를 이용하여 As(III) 산화 시 부피의 영향에 대해 알아보았다. 35, 300, 500 kHz 세 주파수의 초음파를 조사 시 생성되는 과산화수소를 측정하였을 때 300 kHz에서 과산화수소의 cavitation yield 가 가장 크게 나타났다. 주파수 300 kHz의 초음파를 이용하여 As(III) 용액을 4가지 부피(334, 690, 1,046, 1,401 mL)에 대해 산화시킨 결과, 부피가 증가할수록 반응 속도 상수는 감소하였다. 그러나 As(III)의 cavitation yield는 작은 부피에서는 시간이 지남에 따라 값이 감소하였으나 큰 부피에서는 시간이 지나도 값이 유지되거나 오히려 증가하는 결과를 보였다. 초음파 공정에서 As(III)를 산화시킬 때 짧은 시간 내에 일정 농도 이하가 되기 위해서는 반응 속도 상수 결과에 따라 작은 부피에서 산화시키는 것이 유리하다. 반면에 큰 부피에서 오랫동안 산화시킨다면 As(III)의 cavitation yield 결과에 따라 소비 에너지 대비 많은 양(mass)의 As(III)를 산화시킬 수 있기 때문에 출력밀도가 낮음에도 불구하고 적용 가능성이 높다는 것을 확인하였다.

The objective of this study was to find the frequency that most effectively generates hydroxyl radical and to investigate the effect of solution volume on the oxidation of arsenite (As[III]) under the determined frequency. Based on the cavitation yield for hydrogen peroxide, hydroxyl radical is formed most effectively under the frequency of 300 kHz. The experiment was performed with various solution volumes (334, 690, 1,046, and 1,401 mL) under 300 kHz. Results showed that as solution volume increased, kinetic constant for arsenite oxidation decreased. However, cavitation yield for arsenite decreased in small volumes (334, and 690 mL) but maintained or increased in large volumes (1,046, and 1,401 mL) over a set period of time (10, 30, and 60 min). Based on the kinetic constant result, it is more advantageous to oxidize arsenite in small volumes. However, according to the cavitation yield for arsenite, it is applicable to oxidize arsenite in large volumes over a long period of time.

키워드

과제정보

연구 과제번호 : 토양.지하수오염방지기술개발사업

연구 과제 주관 기관 : 환경부

참고문헌

  1. Mohan, D. and Pittman Jr, C. U., "Arsenic removal from water/wastewater using adsorbents-A critical review," J. Hazard. Mater, 142(1-2), 1-53(2007) https://doi.org/10.1016/j.jhazmat.2007.01.006
  2. Ansari, R. and Sadegh, M., "Application of Activated Carbon for Removal of Arsenic ions from aqueous solutions," E-J. Chem., 4(1), 103-108(2007) https://doi.org/10.1155/2007/829187
  3. Hug, S. J., Canonica, L., Wegelin, M., Gechter, D. and Von Gunten, U., "Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters," Environ. Sci. Technol., 35(10), 2114-2121(2001) https://doi.org/10.1021/es001551s
  4. Ahamed, S., Kumar Sengupta, M., Mukherjee, A., Amir Hossain, M., Das, B., Nayak, B., Pal, A., Chandra Mukherjee, S., Pati, S., Nath Dutta, R., Chatterjee, G., Mukherjee, A., Srivastava, R. and Chakraborti, D., "Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: A severe danger," Sci. Total Environ., 370(2-3), 310-322(2006) https://doi.org/10.1016/j.scitotenv.2006.06.015
  5. Brandhuber, P. and Amy, G., "Alternative methods for membrane filtration of arsenic from drinking water," Desalination, 117(1-3), 1-10(1998) https://doi.org/10.1016/S0011-9164(98)00061-7
  6. Macedonio, F. and Drioli, E., "Pressure-driven membrane operations and membrane distillation technology integration for water purification," Desalination, 223(1-3), 396-409(2008) https://doi.org/10.1016/j.desal.2007.01.200
  7. Nguyen, V. T., Vigneswaran, S., Ngo, H. H., Shon, H. K. and Kandasamy, J., "Arsenic removal by a membrane hybrid filtration system," Desalination, 236(1-3), 363-369(2009) https://doi.org/10.1016/j.desal.2007.10.088
  8. Lakshmanan, D., Clifford, D. A. and Samanta, G., "Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation," Water Res., 44(19), 5641-5652(2010) https://doi.org/10.1016/j.watres.2010.06.018
  9. Bilici Baskan, M. and Pala, A., "A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate," Desalination, 254(1-3), 42-48(2010) https://doi.org/10.1016/j.desal.2009.12.016
  10. Pettine, M., Campanella, L. and Millero, F. J., "Arsenite oxidation by $H_2O_2$ in aqueous solutions," Geochim. Cosmochim. Acta, 63(18), 2727-2735(1999) https://doi.org/10.1016/S0016-7037(99)00212-4
  11. Kim, M. J. and Nriagu, J., "Oxidation of arsenite in groundwater using ozone and oxygen," Sci. Total Environ., 247(1), 71-79(2000) https://doi.org/10.1016/S0048-9697(99)00470-2
  12. Emett, M. T. and Khoe, G. H., "Photochemical oxidation of arsenic by oxygen and iron in acidic solutions," Water Res., 35(3), 649-656(2001) https://doi.org/10.1016/S0043-1354(00)00294-3
  13. Hug, S. J. and Leupin, O., "Iron-catalyzed oxidation of arsenic (III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction," Environ. Sci. Technol., 37(12), 2734-2742(2003) https://doi.org/10.1021/es026208x
  14. Dutta, P. K., Pehkonen, S., Sharma, V. K. and Ray, A. K., "Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals," Environ. Sci. Technol., 39(6), 1827-1834(2005) https://doi.org/10.1021/es0489238
  15. Xu, T., Kamat, P. V. and O'Shea, K. E., "Mechanistic evaluation of arsenite oxidation in $TiO_2$ assisted photocatalysis," J. Phys. Chem. A, 109(40), 9070-9075(2005) https://doi.org/10.1021/jp054021x
  16. Mason, T. J., "Sonochemistry and the environment-Providing a "green" link between chemistry, physics and engineering," Ultrason. Sonochem., 14(4), 476-483(2007) https://doi.org/10.1016/j.ultsonch.2006.10.008
  17. Chowdhury, P. and Viraraghavan, T., "Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes-A review," Sci. Total Environ., 407(8), 2474-2492(2009) https://doi.org/10.1016/j.scitotenv.2008.12.031
  18. Entezari, M. H. and Kruus, P., "Effect of frequency on sonochemical reactions II. Temperature and intensity effects," Ultrason. Sonochem., 3(1), 19-24(1996) https://doi.org/10.1016/1350-4177(95)00037-2
  19. Manousaki, E., Psillakis, E., Kalogerakis, N. and Mantzavinos, D., "Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation," Water Res., 38(17), 3751-3759(2004) https://doi.org/10.1016/j.watres.2004.06.002
  20. Jiang, Y., Petrier, C. and Waite, T. D., "Sonolysis of 4-chlorophenol in aqueous solution: Effects of substrate concentration, aqueous temperature and ultrasonic frequency," Ultrason. Sonochem., 13(5), 415-422(2006) https://doi.org/10.1016/j.ultsonch.2005.07.003
  21. Lim, M. H., Kim, S. H., Kim, Y. U. and Khim, J., "Sonolysis of chlorinated compounds in aqueous solution," Ultrason. Sonochem., 14(2), 93-98(2007) https://doi.org/10.1016/j.ultsonch.2006.03.003
  22. Asakura, Y., Nishida, T., Matsuoka, T. and Koda, S., "Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors," Ultrason. Sonochem., 15(3), 244-250(2008) https://doi.org/10.1016/j.ultsonch.2007.03.012
  23. Son, Y., Lim, M. and Khim, J., "Investigation of acoustic cavitation energy in a large-scale sonoreactor," Ultrason. Sonochem., 16(4), 552-556(2009) https://doi.org/10.1016/j.ultsonch.2008.12.004
  24. Son, Y., Lim, M., Ashokkumar, M. and Khim, J., "Geometric Optimization of Sonoreactors for the Enhancement of Sonochemical Activity," J. Phys. Chem. C(2011)
  25. Lim, M., Son, Y. and Khim, J., "Frequency effects on the sonochemical degradation of chlorinated compounds," Ultrason. Sonochem., 18(1), 460-465(2011) https://doi.org/10.1016/j.ultsonch.2010.07.021
  26. Hua, I. and Hoffmann, M. R., "Optimization of ultrasonic irradiation as an advanced oxidation technology," Environ. Sci. Technol., 31(8), 2237-2243(1997) https://doi.org/10.1021/es960717f
  27. Colussi, A., Hung, H. M. and Hoffmann, M. R., "Sonochemical degradation rates of volatile solutes," J. Phys. Chem. A, 103(15), 2696-2699(1999)
  28. Hung, H. M. and Hoffmann, M. R., "Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons: frequency effects," J. Phys. Chem. A, 103(15), 2734-2739 (1999) https://doi.org/10.1021/jp9845930
  29. Kang, J. W., Hung, H. M., Lin, A. and Hoffmann, M. R., "Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: the role of $O_3,\;H_2O_2$, frequency, and power density," Environ. Sci. Technol., 33(18), 3199-3205(1999) https://doi.org/10.1021/es9810383
  30. Beckett, M. A. and Hua, I., "Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry," J. Phys. Chem. A, 105(15), 3796-3802(2001) https://doi.org/10.1021/jp003226x
  31. Yang, L., Sostaric, J. Z., Rathman, J. F. and Weavers, L. K., "Effect of ultrasound frequency on pulsed sonolytic degradation of octylbenzene sulfonic acid," J. Phys. Chem. B, 112(3), 852-858(2008) https://doi.org/10.1021/jp077482m
  32. Isariebel, Q.-P., Carine, J.-L., Ulises-Javier, J.-H., Anne-Marie, W. and Henri, D., "Sonolysis of levodopa and paracetamol in aqueous solutions," Ultrason. Sonochem., 16(5), 610-616(2009) https://doi.org/10.1016/j.ultsonch.2008.11.008
  33. Navarro, N. M., Chave, T., Pochon, P., Bisel, I. and Nikitenko, S. I., "Effect of Ultrasonic Frequency on the Mechanism of Formic Acid Sonolysis," J. Phys. Chem. B(2011)
  34. Neppolian, B., Doronila, A., Grieser, F. and Ashokkumar, M., "Simple and efficient sonochemical method for the oxidation of arsenic (III) to arsenic (V)," Environ. Sci. Technol., 43(17), 6793-6798(2009) https://doi.org/10.1021/es900878g
  35. Cui, M., Lee, S., Jang, M., Kweon, B., Jo, H. and Khim, J., "Sonochemical Oxidation of Arsenite in Aqueous Phase," Jpn. J. Appl. Phys., 50(7)(2011)
  36. Toma, M., Fukutomi, S., Asakura, Y. and Koda, S., "A calorimetric study of energy conversion efficiency of a sonochemical reactor at 500 kHz for organic solvents," Ultrason. Sonochem., 18(1), 197-208(2011) https://doi.org/10.1016/j.ultsonch.2010.05.005
  37. Olson, T. M. and Barbier, P. F., "Oxidation kinetics of natural organic matter by sonolysis and ozone," Water Res., 28(6), 1383-1391(1994) https://doi.org/10.1016/0043-1354(94)90305-0
  38. Weavers, L. K., Malmstadt, N. and Hoffmann, M. R., "Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation," Environ. Sci. Technol., 34(7), 1280-1285(2000) https://doi.org/10.1021/es980795y
  39. Lim, M., Son, Y., Yang, J. and Khim, J., "Addition of Chlorinated Compounds in the Sonochemical Degradation of 2- Chlorophenol," Jpn. J. Appl. Phys., 47(5), 4123-4126(2008) https://doi.org/10.1143/JJAP.47.4123