DOI QR코드

DOI QR Code

강자성 초전도체의 연구동향과 전망

Research Trend and Prospect in Ferromagnetic Superconductor

  • 한상욱 (울산대학교 기초과학연구소)
  • Han, Sang-Wook (Basic Science Research Institute, University of Ulsan)
  • 투고 : 2012.03.26
  • 심사 : 2012.04.20
  • 발행 : 2012.04.30

초록

강자성 초전도체의 발견은 상극으로 알려진 강자성과 초전도성이 어떻게 상호작용하여 조화롭게 공존하는지에 대한 학문적인 연구뿐만 아니라 새로운 기술적인 응용을 위한 광범위한 탐구를 이끌고 있다. 본 해설논문에서는 강자성 초전도체에 대한 이해를 돕기 위하여, 먼저 초전도체의 쿠퍼쌍을 깨뜨리는 강한 자기장의 궤도 효과와 상자성 효과에 대하여 설명한다. 자기장의 이러한 효과 이외에도 초전도체/강자성체 복합 구조의 계면에서 발생하는 근접 효과에 의해 단일상 쿠퍼쌍은 강자성체를 지나가는 동안 불안정하여 아주 짧은 침투깊이를 가진다. 그러나 쿠퍼쌍이 홀-진동수 삼중상인 경우 안정되고 긴 유효길이를 가지게 되는데, 새로운 스핀 전자소자로서의 개발을 위해 그 연구의 중요성이 높아지고 있다. 마지막으로 다양한 강자성 초전도체와 양자구속효과에 의해 두 성질이 공존하는 저차원의 물질들을 소개한다.

The findings of ferromagnetic superconductor have attracted much attention not only for fundamental research to investigate how the antagonistic properties of ferromagnetism and superconductivity coexist peacefully but also for potential technological applications. Firstly, in order to help for understanding the ferromagnetic superconductor, I have explained the orbital and paramagnetic pair-breaking effects of magnetic field, which breaks the superconducting Cooper pairs. In addition to such effects of magnetic field, the singlet Cooper pairs become unstable upon going through the ferromagnetic materials by the proximity effect. The proximity effect occurs at the interface of thin films composing of superconductor and ferromagnet and leads to have very short penetration depth of Cooper pairs. However, a type of odd-frequency triplet in comparison with the singlet could be very stable and has a longer effective depth. It needs to be explored for the innovative spintronic devices. Finally, various ferromagnetic superconductors coexist and the lower-dimensional materials under the Quantum confinement effect have been introduced.

키워드

참고문헌

  1. Y. Kamihar, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008). https://doi.org/10.1021/ja800073m
  2. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011). https://doi.org/10.1103/RevModPhys.83.1589
  3. M. Tinkham, Introduction to Superconductivity, 2nd Ed., McGraw-Hill, New York (1996).
  4. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962). https://doi.org/10.1103/PhysRevLett.9.266
  5. B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).
  6. K. Maki, Physics, Long Island City, New York, 1, 127 (1964).
  7. P. Fulde and R. A. Ferrell, Phys. Rev. 135 A550 (1964); A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).
  8. H. A. Radovan, N. A. Fortune, T. P. Murphy, S. T. Hannahs, E. C. Palm, S. W. Tozer, and D. Hall, Nature 425, 51 (2003) https://doi.org/10.1038/nature01842
  9. R. Lortz, Y. Wang, A. Demuer, P. H. M. Böttger, B. Bergk, G. Zwicknagl, Y. Nakazawa, and J. Wosnitza, Phys. Rev. Lett. 99, 187002 (2007). https://doi.org/10.1103/PhysRevLett.99.187002
  10. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005). https://doi.org/10.1103/RevModPhys.77.935
  11. H. W. Meul, C. Rossel, M. Decroux, O Fischer, G. Remenyi, and A. Briggs, Phys. Rev. Lett. 53, 497 (1984) https://doi.org/10.1103/PhysRevLett.53.497
  12. S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, Nature 410, 908 (2001) https://doi.org/10.1038/35073531
  13. L. Balicas, J. S. Brooks, K. Storr, S. Uji, M. Tokumoto, H. Tanaka, H. Kobayashi, A. Kobayashi, V. Barzykin, and L. P. Gor'kov, Phys. Rev. Lett. 87, 067002 (2001). https://doi.org/10.1103/PhysRevLett.87.067002
  14. V. Jaccarino and M. Peter, Phys. Rev. Lett. 9, 290 (1962). https://doi.org/10.1103/PhysRevLett.9.290
  15. 이후종, 물리학과첨단기술 9, 7/8호 (2000).
  16. N. R. Werthamer, Phys. Rev. 132, 2440 (1963) https://doi.org/10.1103/PhysRev.132.2440
  17. P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964) https://doi.org/10.1103/RevModPhys.36.225
  18. K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970). https://doi.org/10.1103/PhysRevLett.25.507
  19. R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. Gupta, Nature 439, 825 (2006). https://doi.org/10.1038/nature04499
  20. M. Eschrig, Phys. Today 64, 43 (2011). https://doi.org/10.1063/1.3541944
  21. V. L. Berezinskii, JETP Lett. 20, 287 (1974)
  22. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005). https://doi.org/10.1103/RevModPhys.77.1321
  23. M. Eschrig and T. Lofwander, Natue Phys. 4, 138 (2008). https://doi.org/10.1038/nphys831
  24. B. T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Lett. 1, 92 (1958). https://doi.org/10.1103/PhysRevLett.1.92
  25. K. Machida, Appl. Phys. A 35, 193 (1984). https://doi.org/10.1007/BF00617170
  26. I. Felner, U. Asaf, Y. Levi, and O. Millo, Phys. Rev. B 55, R3374 (1997) https://doi.org/10.1103/PhysRevB.55.R3374
  27. J. L. Tallon, C. Bernhard, M. E. Bowden, P. W. Gilberd, T. M. Stoto, and D. J. Pringle, IEEE Trans. Appl. Supercond. 9, 1696 (1999) https://doi.org/10.1109/77.784779
  28. C. Bernhard, J. L. Tallon, Ch. Niedermayer, Th. Blasius, A. Golnik, E. Brücher, R. K. Kremer, D. R. Noakes, C. E. Stronach, and E. J. Ansaldo, Phys. Rev. B 59, 14099 (1999). https://doi.org/10.1103/PhysRevB.59.14099
  29. S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature 406, 587 (2000) https://doi.org/10.1038/35020500
  30. D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, and C. Paulsen, Nature 413, 613 (2001) https://doi.org/10.1038/35098048
  31. N. T. Huy, A. Gasparini, D. E. de Nijs, Y. Huang, J. C. P. Klaasse, T. Gortenmulder, A. de Visser, A. Hamann, T. Gorlach, and H. v. Lohneysen, Phys. Rev. Lett. 99, 067006 (2007) https://doi.org/10.1103/PhysRevLett.99.067006
  32. T. Akazawa, H. Hidaka, T. Fujiwara, T. C. Kobayashi, E. Yamamoto, Y. Haga, R. Settai, and Y. Onuki, J. Phys.: Condens. Matter 16, L29 (2004). https://doi.org/10.1088/0953-8984/16/4/L02
  33. D. Fay and J. Appel, Phys. Rev. B 22, 3173 (1980) https://doi.org/10.1103/PhysRevB.22.3173
  34. T. R. Kirkpatrick, D. Belitz, Thomas Vojta, and R. Narayanan, Phys. Rev. Lett. 87, 127003 (2001). https://doi.org/10.1103/PhysRevLett.87.127003
  35. F. Levy, I. Sheikin, B. Grenier, and A. D. Huxley, Science 309, 1343 (2005). https://doi.org/10.1126/science.1115498
  36. S. Maekawa and M. Tachiki, Phys. Rev. B 18, 4688 (1978). https://doi.org/10.1103/PhysRevB.18.4688
  37. T. Hattori, Y. Ihara, Y. Nakai, K. Ishida, Y. Tada, S. Fujimoto, N. Kawakami, E. Osaki, K. Deguchi, N. K. Sato, and I. Satoh, Phys. Rev. Lett. 108, 066403 (2012). https://doi.org/10.1103/PhysRevLett.108.066403
  38. D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, Phys. Rev. Lett. 107, 056802 (2011) https://doi.org/10.1103/PhysRevLett.107.056802
  39. L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Nature Phys. 7, 762 (2011) https://doi.org/10.1038/nphys2080
  40. K. Michaeli, A. C. Potter, and P. A. Lee, Phys. Rev. Lett. 108, 117003 (2012). https://doi.org/10.1103/PhysRevLett.108.117003
  41. J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J. K. Jain, N. Samarth, T. E. Mallouk, and M. H. W. Chan, Nature Phys. 6, 389 (2010). https://doi.org/10.1038/nphys1621
  42. M. Tian, N. Kumar, S. Xu, J. Wang, J. S. Kurtz, and M. H. W. Chan, Phys. Rev. Lett. 95, 076802 (2005) https://doi.org/10.1103/PhysRevLett.95.076802
  43. Y. Chen, S. D. Snyder, and A. M. Goldman, Phys. Rev. Lett. 103, 127002 (2009). https://doi.org/10.1103/PhysRevLett.103.127002
  44. T. Herrmannsdorfer, R. Skrotzki, J. Wosnitza, D. Köhler, R. Boldt, and M. Ruck, Phys. Rev. B 83, 140501(R) (2011). https://doi.org/10.1103/PhysRevB.83.140501
  45. S. Bose, A. M. García-García, M. M. Ugeda, J. D. Urbina, C. H. Michaelis, I. Brihuega, and K. Kern, Nature Mater. 9, 550 (2010) https://doi.org/10.1038/nmat2768
  46. W.-H. Li, C.-W. Wang, C.-Y. Li, C. K. Hsu, C. C. Yang, and C.-M. Wu, Phys. Rev. B 77, 094508 (2008). https://doi.org/10.1103/PhysRevB.77.094508
  47. S. A. Gomathi, A. Sundaresan, and C. N. R. Rao, Solid State Commun. 142, 685 (2007). https://doi.org/10.1016/j.ssc.2007.04.041

피인용 문헌

  1. Inverse Magnetoresistance Characteristic of Hybrid-Type Multilayer Structure of IrMn-Based Giant-Magnetoresistance Spin Valve and High-Tc Superconductor YBa2Cu3O7−x Film pp.1543-186X, 2018, https://doi.org/10.1007/s11664-018-6659-x