DOI QR코드

DOI QR Code

Methane Gas Sensing Properties of the Zinc Oxide Nanowhisker-derived Gas Sensor

  • Moon, Hyung-Sin (Bump Engineering Team, DDI Engineering Group, Nepes Corporation) ;
  • Kim, Sung-Eun (MEMS/NANO Fabrication Center, Busan Techno-Park) ;
  • Choi, Woo-Chang (MEMS/NANO Fabrication Center, Busan Techno-Park)
  • Received : 2012.01.17
  • Accepted : 2012.02.28
  • Published : 2012.04.25

Abstract

A low power methane gas sensor with microheater was fabricated by silicon bulk micromachining technology. In order to heat up the sensing layer to operating temperature, a platinum (Pt) micro heater was embedded in the gas sensor. The line width and gap of the microheater was 20 ${\mu}m$ and 4.5 ${\mu}m$, respectively. Zinc oxide (ZnO) nanowhisker arrays were grown on a sensor from a ZnO seed layer using a hydrothermal method. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growing ZnO nanowhiskers. Temperature distribution of the sensor was analyzed by infrared thermal camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high (64%) sensitivity was obtained even at as low a temperature as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$, and only 25 mW at $150^{\circ}C$.

Keywords

References

  1. Q. Schiermeier, Nature 439, 128 (2006) [DOI: 10.1038/439128a].
  2. K. D. Mitzner, J. Sternhagen, and D. W. Galipeau, Sensor. Actuat. B 93, 92 (2003) [DOI: 10.1016/S0925-4005(03)00244-2].
  3. J. S. Suehle, R. E. Cavicchi, M. Gaitan, and S. Semancik, IEEE Electron Device Letters 14, 118 (1993) [DOI: 10.1109/55.215130].
  4. C. Lu, Z. Chen, and V. Singh, Sensor. Actuat. B 146, 145 (2010) [DOI: 10.1016/j.snb.2010.02.034].
  5. S. Santra, P. K. Guha, S. Z. Ali, P. Hiralal, H. E. Unalan, J. A. Convington, G. A. J. Amaratunga, W. I. Milne, J. W. Gardner, and F. Udrea, Sensor. Actuat. B 146, 559 (2010) [DOI: 10.1016/ j.snb.2010.01.009].
  6. L. V. Thong, N. D. Hoa, D. T. Thanh Le, D. T. Viet, P. D. Tam, A. T. Le, and N. V. Hieu, Sensor. Actuat. B 146, 361 (2010) [DOI: 10.1016/j.snb.2010.02.054].
  7. K. Chatterjee, S. Chatterjee, A. Banerjee, M. Raut, N. C. Pal, A. Sen, and H. S. Maiti, Materials Chemistry and Physics 81, 33 (2003) [DOI: 10.1016/S0254-0584(03)00145-7].
  8. D. Kohl, J. Phys. D: Appl. Phys. 34, 125 (2001) [DOI: 10.1088/0022-3727/34/19/201].
  9. J. Puigcorbe, D. Vogel, B. Michel, A. Vila, I. Gracia, C. Cane and J. R. Morante, J. Micromech. Microeng. 13, 548 (2003) [DOI: 10.1088/0960-1317/13/5/304].
  10. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2002) [DOI: 10.1063/1.1504867].
  11. Z. L. Wang, Adv. Mater. 15, 432 (2003) [DOI: 0935-9648/03/0503- 0433]. https://doi.org/10.1002/adma.200390100
  12. C. M. Carney, S. Yoo, and S. A. Akbar, Sensor. Actuat. B 108, 29 (2005) [DOI: 10.1016/j.snb.2004.11.058].
  13. N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surface Science 86, 335 (1979) [DOI: 10.1016/0039-6028(79)90411-4].

Cited by

  1. Palladium–Silver-Activated ZnO Surface: Highly Selective Methane Sensor at Reasonably Low Operating Temperature vol.6, pp.6, 2014, https://doi.org/10.1021/am404883x
  2. Aging effects on the stability of nitrogen-doped and un-doped InGaZnO thin-film transistors vol.37, 2015, https://doi.org/10.1016/j.mssp.2015.02.036
  3. Fluorescence enhancement and multiple protein detection in ZnO nanostructure microfluidic devices vol.75, 2016, https://doi.org/10.1016/j.bios.2015.08.050
  4. Functionalized ZnO/ZnO2 n–N straddling heterostructure achieved by oxygen plasma bombardment for highly selective methane sensing vol.17, pp.41, 2015, https://doi.org/10.1039/C5CP04947D