DOI QR코드

DOI QR Code

GENERALIZATIONS OF T-EXTENDING MODULES RELATIVE TO FULLY INVARIANT SUBMODULES

  • Asgari, Shadi (Department of Mathematical Sciences Isfahan University of Technology, School of Mathematics Institute for research in Fundamental Sciences (IPM)) ;
  • Haghany, Ahmad (Department of Mathematical Sciences Isfahan University of Technology)
  • Received : 2010.06.06
  • Published : 2012.05.01

Abstract

The concepts of t-extending and t-Baer for modules are generalized to those of FI-t-extending and FI-t-Baer respectively. These are also generalizations of FI-extending and nonsingular quasi-Baer properties respectively and they are inherited by direct summands. We shall establish a close connection between the properties of FI-t-extending and FI-t-Baer, and give a characterization of FI-t-extending modules relative to an annihilator condition.

Keywords

References

  1. Sh. Asgari and A. Haghany, T-extending modules and t-Baer modules, Comm. Algebra 39 (2011), 1605-1623. https://doi.org/10.1080/00927871003677519
  2. G. F. Birkenmeier, G. Calugareanu, L. Fuchs, and H. P. Goeters, The fully invariant extending property for abelian groups, Comm. Algebra 29 (2001), no. 2, 673-685. https://doi.org/10.1081/AGB-100001532
  3. G. F. Birkenmeier, B. J. Muller, and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, Comm. Algebra 30 (2002), no. 3, 1395- 1415. https://doi.org/10.1080/00927870209342387
  4. G. F. Birkenmeier, J. K. Park, and S. T. Rizvi, Modules with fully invariant submodules essential in fully invariant summands, Comm. Algebra 30 (2002), no. 4, 1833-1852. https://doi.org/10.1081/AGB-120013220
  5. G. F. Birkenmeier, J. K. Park, and S. T. Rizvi, Generalized triangular matrix rings and the fully invariant extending property, Rocky Mountain J. Math. 32 (2002), no. 4, 1299-1319. https://doi.org/10.1216/rmjm/1181070024
  6. G. F. Birkenmeier, J. K. Park, and S. T. Rizvi, Modules with FI-extending hulls, Glasg. Math. J. 51 (2009), no. 2, 347-357. https://doi.org/10.1017/S0017089509005023
  7. M. A. Kamal and A. M. Menshawy, CS-modules and annihilator conditions, Int. J. Math. Math. Sci. 2003 (2003), no. 50, 3195-3202. https://doi.org/10.1155/S0161171203206219
  8. T. Y. Lam, Lectures on Modules and Rings. Graduate Texts in Mathematics, Vol. 189, Springer-Verlag, New York/Berlin, 1998.
  9. A. C. Ozcan, A. Harmanci, and P. F. Smith, Duo modules, Glasg. Math. J. 48 (2006), no. 3, 533-545. https://doi.org/10.1017/S0017089506003260
  10. S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32 (2004), no. 1, 103-123. https://doi.org/10.1081/AGB-120027854
  11. R. Wisbauer, M. F. Yousif, and Y. Zhou, Ikeda-Nakayama modules, Beitrage Algebra Geom. 43 (2002), no. 1, 111-119.

Cited by

  1. Modules Whoset-Closed Submodules Have a Summand as a Complement vol.42, pp.12, 2014, https://doi.org/10.1080/00927872.2013.839695