여러 자생식물의 내염성 정도 구명

Salt Tolerance of Various Native Plants under Salt Stress

  • Shim, Myung Syun (Department of Horticulture and Education, Korea National Arboretum) ;
  • Kim, Young Jae (Department of Horticulture and Education, Korea National Arboretum) ;
  • Lee, Chung Hee (Department of Horticulture and Education, Korea National Arboretum) ;
  • Shin, Chang Ho (Department of Horticulture and Education, Korea National Arboretum)
  • 투고 : 2012.11.14
  • 심사 : 2012.11.28
  • 발행 : 2012.12.31

초록

본 실험에서는 염토지대에 조경용 식재로 사용이 가능한지 알아보기 위해 여러 과에 속하는 자생식물의 염 스트레스에 대한 내염성 정도를 조사하였다. NaCl의 처리에 따른 식물의 생육반응과 이온흡수 특성도 파악하여, 여러 식물에 대한 내성 정도를 구명하고자 하였다. 실험재료로 노랑꽃창포, 밀사초, 여우꼬리사초, 줄사초, 홍노줄사초, 애기부들, 바위 및 땅채송화 등을 이용하였다. 염농도는 0, 100, 200, 300mM로 처리해 주었다. 처리 4주 후 지상부 및 뿌리의 생체중 건물중, 엽내 무기이온 함량 등을 조사하였다. 줄사초, 왕밀사초, 여우꼬리사초, 노랑꽃창포 등은 NaCl 200mM의 고농도에서도 잘 견디는 초종으로 판단되었다. 홍노줄사초, 애기부들 등은 지하부 생육이 NaCl 100mM의 농도에서 저하되어, 지상부다 뿌리가 민감하게 반응하는 것으로 나타났다. 홍노줄사초는 K의 흡수량이 감소되었고, Na/K의 비율은 300mM의 농도에서 3으로 다른 종보다 높은 경향을 보였다. 애기부들은 NaCl의 농도가 증가됨에 따라 K, Ca, Mg의 흡수량이 일시 증가하다가 200mM의 농도부터 감소하는 경향을 보였고, Na/K의 비율은 300mM의 농도에서 0.8로 조사되었다. 땅채송화 및 바위채송화 등도 NaCl 100~200mM의 범위에서 지상부 및 지하부의 생육이 영향을 받는 것으로 나타났다. 바위채송화는 NaCl의 농도가 증가됨에 따라 K, Ca, Mg의 흡수량이 일시 증가하다가 200mM의 농도부터 감소하는 경향을 보였고, 땅채송화는 염농도에 따라 흡수량이 영향을 받지 않는 것으로 나타났다. Na/K의 비율은 300mM의 농도에서 모두 1로 조사되었다. 그러므로, 여우꼬리사초, 왕밀사초, 줄사초, 노랑꽃창포 등은 식물의 생육 및 이온흡수 특성을 고려할 때 NaCl 200mM의 고농도에서도 잘 견디는 초종으로 판단되었고, 특히 사초과 식물들의 내염성이 검증되어 앞으로 많이 활용될 수 있으리라 사료되었다. 홍노줄사초, 애기부들, 바위채송화, 땅채송화 등은 NaCl 100mM의 농도에서도 뿌리의 생육이 저하되었으며, 염처리에 따른 잎의 이온흡수특성은 뚜렷한 경향을 보이지 않았다.

This study was carried out to investigate the plant growth and ion absorbance balance of various native plants affected by the NaCl concentration (0, 100, 200, 300 mM). Carex blepharicarpa, Carex lenta, Carex matsumarae, Carex sendaica, Iris pseudacorus L., Sedum oryzifolium Makino, Sedum polytrichoides Hemsl., and Typha angustifolia L. were used in this experiment. Carex blepharicarpa, Carex lenta, Carex matsumarae, and Iris pseudacorus L. were tolerant of salinity at the NaCl concentration of 200 mM. The root growth of Carex sendaica and Typha angustifolia L. was suppressed at the NaCl concentration of 100 mM, expecially the root growth responded more sensitively than the upper growth to salinity. The K absorbance of Carex sendaica decreased according to the NaCl application, and the Na/K rate value was 3 at the NaCl concentration of 300 mM. The K, Ca, and Mg absorbance of Typha angustifolia L. decreased at the NaCl concentration of 200~300 mM, and the Na/K rate value was 0.8 at the NaCl concentration of 300 mM. The plant growth of Sedum oryzifolium Makino and Sedum polytrichoides Hemsl. was suppressed at the NaCl concentration of 100~200 mM. The K, Ca, and Mg absorbance of Sedum oryzifolium Makino decreased at the NaCl concentration of 200~300 mM, and Sedum polytrichoides Hemsl. was unaffected by the NaCl application. The Na/K value was 1 in both plants. Therefore, Carex blepharicarpa, Carex lenta, Carex matsumarae, and Iris pseudacorus L. were tolerant plants of salinity at the NaCl concentration of 200 mM considering the plant growth and ion absorbance balance. Especially, the Carex plants were expected to expanding use by the proven tolerance of salinity. The root growth of Carex sendaica, Sedum oryzifolium Makino, Sedum polytrichoides Hemsl., and Typha angustifolia L., was suppressed at the NaCl concentration of 100 mM, but there was no distinct tendency of ion absorbance in leaves according to the NaCl application.

키워드

참고문헌

  1. Agastian, P., S.J. Kingsley, and M. Vivekanandan. 2000. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38: 287-290. https://doi.org/10.1023/A:1007266932623
  2. Ashraf, M. and A. Orooj. 2006. Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain. J. Arid. Environ. 64:209-220. https://doi.org/10.1016/j.jaridenv.2005.04.015
  3. Chartzoulakis, K. and G. Klapaki. 2000. Response of two green house pepper hybrids to NaCl salinity during different growth stages. Sci. Hort. 86:247-260. https://doi.org/10.1016/S0304-4238(00)00151-5
  4. Cramer, G.R., J. Lynch, A. Lauchli, and V.S. Polito. 1987. Influx of Na, K and Ca into roots of salt-stressed cotton seedlings. Plant Physiol. 83:510-516. https://doi.org/10.1104/pp.83.3.510
  5. Fox, T.C. and M.L. Guerinot. 1998. Molecular biology of cation transport in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:669-696. https://doi.org/10.1146/annurev.arplant.49.1.669
  6. Jeschke, W.D., J.S. Pate, and C.A. Atkins. 1987. Partitioning of K, Na, Mg, and Ca through xylem and phloem component organs and nodulated white lupin under mild salinity. J. Plant Physiol. 128:77-93. https://doi.org/10.1016/S0176-1617(87)80183-9
  7. Khan, M.A. 2001. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and sapling from the Indus delta, Pakistan. Aquat. Bot. 70:259-268. https://doi.org/10.1016/S0304-3770(01)00160-7
  8. Khan, M.A., I.A. Ungar, and A.M. Showalter. 2000. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun. Soil Sci. Plant Anal. 31:2763-2774. https://doi.org/10.1080/00103620009370625
  9. Kim, J.S., I.S. Shim, and M.J. Kim. 2010. Physiological response of Chinese cabbage to salt stress. Kor. J. Hort. Sci. Technol. 28:343-352.
  10. Kurban, H., H. Saneoka, K. Nehira, R. Adilla, G.S. Premachandra, and K. Fujita. 1999. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Sci. Plant Nutr. 45:851-862. https://doi.org/10.1080/00380768.1999.10414334
  11. Lacerda, C.F., J. Cambraia, M.A. Cano, H.A. Ruiz, and J.T. Prisco. 2003. Solute accumulation and distribution during shoot and development in two sorghum genotypes under salt stress. Environ. Exp. Bot. 49: 107-120. https://doi.org/10.1016/S0098-8472(02)00064-3
  12. Mansfield, T.A., A.M. Hetherington, and C.J. Atkinson. 1990. Some aspects of stomatal physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:55-75. https://doi.org/10.1146/annurev.pp.41.060190.000415
  13. Munns, R. and A. Termaat. 1986. Whole-plant responses to salinity. Aust. J. Plant Physiol. 13:143-160. https://doi.org/10.1071/PP9860143
  14. Parida, A.K. and A.B. Das. 2005. Salt tolerance and salinity effects on plants. Ecotoxicol. Saf. 60:324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  15. Park, H.R., H.H. Jeong, S.M. Lee, C.H. Lee, and K.S. Kim. 2003. Selection of salt-tolerant native plants for revegetation in saline area. Kor. J. Hort. Sci. Technol. 21(Suppl.):76.
  16. Rangel, Z. 1992. The role of calcium in salt toxicity. Plant Cell Environ. 15:625-632. https://doi.org/10.1111/j.1365-3040.1992.tb01004.x