Prediction of Chinese Cabbage Yield as Affected by Planting Date and Nitrogen Fertilization for Spring Production

정식시기와 질소시비 수준에 따른 봄배추의 생육량 추정

  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Seo, Tae Cheol (Audit and Inspection Office, Research Policy Bureau, RDA) ;
  • Jang, Yoon Ah (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Lee, Jun Gu (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Nam, Chun Woo (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Choi, Chang Sun (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Yeo, Kyung-Hwan (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Um, Young Chul (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA)
  • 이상규 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 서태철 (농촌진흥청 감사담당관실) ;
  • 장윤아 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이준구 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 남춘우 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 최장선 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 여경환 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 엄영철 (농촌진흥청 국립원예특작과학원 채소과)
  • Received : 2012.06.11
  • Accepted : 2012.09.11
  • Published : 2012.09.30

Abstract

The average annual and winter ambient air temperatures in Korea have risen by $0.7^{\circ}C$ and $1.4^{\circ}C$, respectively, during the last 30 years. The continuous rise in temperature presents a challenge in growing certain horticultural crops. Chinese cabbage, one most important cool season crop, may well be used as a model to study the influence of climate change on plant growth, because it is more adversely affected by elevated temperatures than warm season crops. This study examined the influence of transplanting time, nitrogen fertilizer level and climate parameters, including air temperature and growing degree days (GDD), on the performance of a Chinese cabbage cultivar (Chunkwang) during the spring growing season to estimate crop yield under the unfavorable environmental conditions. The chinese cabbage plants were transplanted from Apr. 8 to May 13, 2011 when 3~4 leaves were occurred, at internals of 7 days and cultivated with 3 levels of nitrogen fertilization. The data from plants transplanted on Apr. 22 and 29, 2012 were used for the prediction of yield as affected by planting date and nitrogen fertilization for spring production. In our study, plant dry weight was higher when the seedlings were transplanted on 15th (168 g) than on 22nd (139 g) of April. There was no significant difference in the yield when plants were grown with different levels of nitrogen fertilizer. The values of correlation coefficient ($R^2$) between GDD and number of leaves, and between GDD and dry weight of the above-ground plant parts were 0.9818 and 0.9584, respectively. Nitrogen fertilizer did not provide a good correlation with the plant growth. Results of this study suggest that the GDD values can be used as a good indicator in predicting the top biomass yield of Chinese cabbage.

최근 지구온난화에 따른 이상기상 발생 빈도가 증가하고 있으며 배추 등 일부 채소작물의 저온 및 고온 등으로 인하여 생산량에 문제가 발생하고 있다. 이러한 이상기상 조건 발생시 사전에 생산량을 예측하면 수급을 조절하는데 효과적이라 판단된다. 따라서 본 실험은 기상이변에 따른 봄배추의 생육량을 추정하기 위하여 정식시기와 질소시비량을 달리하여 생육인자간 상관계수를 도출하였다. 그 결과, 정식시기별 최종 생육은 4월 15일과 4월 22일 정식 처리에서 건물중이 각각 168g과 139g으로 타 시기에 비해 높았으며, 질소처리에 따른 차이는 없었다. 기후인자 온도, 일사량, GDD, 그리고 생육인자 엽수, 지상부생체중, 지상부건물중 등의 편상관분석 결과, 유의성이 높은 것으로 나타났다. GDD와 엽수, GDD와 지상부 건물중의 분포를 측정한 결과, 질소시비 수준에 따른 차이는 없었으며, 3차함수로 다항회귀식을 구한 결과, 엽수$(y)=-0.0000004x^3+0.0004x^2+0.0225x+5.4045$($R^2$=0.9818), 지상부건물중$(y)=-0.0000008x^3+0.001x^2-0.0958x+0.3426$($R^2$=0.9584)로 나타났다. 따라서 봄배추 생육기간중에 GDD 측정만으로도 봄배추의 지상부 생산량을 추정할 수 있을 것으로 판단되었다.

Keywords

References

  1. Cho, Y.Y. and J.E. Son. 2009. Determination of suitable parameters for developing adequate growth model of pak-choi plants. Hort. Environ. Biotechnol. 50:532-535
  2. Eitzinger, J., M. Trnka, J. Hosch, Z. Zalud, and M. Dubrovsky. 2004. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modeling 171:223-246. https://doi.org/10.1016/j.ecolmodel.2003.08.012
  3. Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, and J.T. Ritchie. 2003. The DSSAT cropping system model. Europ. J. Agronomy 18:235-265 https://doi.org/10.1016/S1161-0301(02)00107-7
  4. Kang, H.J., J.S. Lee, K.Y. Ryu, and J.T. Lee. 2002. Technology of Chinese cabbage cultivation. Rural Development Administration. Korea. pp. 39-42.
  5. Kim, Y.H., S.Y. Hong, and H.Y. Lee. 2010. Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth. K. J. Soil Sci. Fert. 43:374-383.
  6. Lee, B,W., Y.H. Lee, J.E. Lee, K.H. Moon, D.J. Kim, K.J. Lee, and D.H. Choi. 2010. Develop crop growth models for soybean, potato, and oilseed rape, evaluate the temperature response of major upland crop under the changed climate condition. Res. Rept. RDA. p. 89.
  7. Lenz-Wiedemann, V.I.S., C.W. Klar, and K. Schneider. 2010. Development and test of a crop growth model for application within a global change decision support system. Ecological Modeling 221:314-329. https://doi.org/10.1016/j.ecolmodel.2009.10.014
  8. Liu, H.L., J.Y. Yang, C.F. Drury, W.D. Reynolds, C.S. Tan, Y.L. Bai, P. He, J. Jin, and G. Hoogenboom. 2011. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under longterm continuos maize production. Nutr. Cycl. Agroecosyst 89:313-328. https://doi.org/10.1007/s10705-010-9396-y
  9. Lobell, D.B. and M.B. Burke. 2010. On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology 150:1443-1452. https://doi.org/10.1016/j.agrformet.2010.07.008
  10. National Institution Horticultural and Herbal Science (NIHHS). 2009. Annual report. 2009.
  11. Nendel, C., U. Schmutz, A. Venezia, F. Piro, and C.R. Rahn. 2009. Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels. Plant & Soil 325:319-334. https://doi.org/10.1007/s11104-009-0015-0