DOI QR코드

DOI QR Code

Bacterial Community Dynamics during Swine In vitro Fermentation Using Starch as a Substrate with Different Feed Additives for Odor Reduction

  • Alam, Md.J. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Jeong, C.D. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Mamuad, L.L. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Sung, H.G. (Adbiotech Co. Ltd.) ;
  • Kim, D.W. (Swine Science Division, National Institute of Animal Science, RDA) ;
  • Cho, S.B. (Animal Environment Division, National Institute of Animal Science, RDA) ;
  • Lee, K. (Department of Animal Sciences, Ohio State University) ;
  • Jeon, C.O. (Department of Life Science, Chung-Ang University) ;
  • Lee, Sang-S. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University)
  • Received : 2011.11.27
  • Accepted : 2012.03.28
  • Published : 2012.05.01

Abstract

The experiment was conducted by in vitro fermentation and bacterial community analysis to investigate the reduction of odorous compounds in response to the use of feed additives (FA) during carbohydrate overload in growing pigs. Soluble starch at 1% (control) and various FA at 0.1% Ginseng meal (FA1); Persimmon leaf (FA2); Gingko nut (FA3) and Oregano lippia (FA4) were added to fecal slurry and incubated anaerobically for 12 and 24 h. In vitro parameters and microbial diversity of the dominant bacteria following fermentation were analyzed using Denaturing Gradient Gel Electrophoresis (DGGE), band cloning and sequencing of the V3 region. Results showed that total gas production increased with the advancement of incubation (p<0.05). pH values of FAs and control groups were decreased except the FA4 group which increased somewhat from 12 to 24 h (p<0.05). Ammonia nitrogen ($NH_3$-N) and $H_2S$ gas concentrations were comparatively lower in both stages in FA4 treatment than in the other groups (p<0.05). Hence, $NH_3$-N concentrations in liquid phases were increased (p<0.05) from 12 to 24 h, but the trend was lowest in FA4 than in the other groups at both stages. The total VFA production was comparatively lower and butyrate levels were moderate in FA4 group than in the the other groups during both stages (p<0.05). Indirect odor-reducing compounds such as $NO_2$, $NO_3$ and $SO_4$ concentrations were higher in the FA4 and FA3 than in the other groups at 24 h (p<0.05). After fermentation, ten dominant bands appeared, six of which appeared in all samples and four in only the FA4 treated group. The total number of DGGE bands and diversity was higher in the FA4-group compared to other groups. Additionally, similarity indices were lowest (71%) in the FA4, which represented a different bacterial community compared with the other groups. These findings indicate that $NH_3$-N, $H_2S$ and VFA production was minimal, and pH was also better in the FA4 group than in the other groups. Furthermore, the conversion of odor-reducing indirect compounds or their intermediates was higher in the FA4 group in compared to the other groups. FA4 group generated less odorous products and more indirect products by in vitro fermentation at 24 h, and their microbial pattern appeared to differ from that of the other groups. These findings suggest that this particular FA could change the microbial population, which may have a beneficial effect on odor reduction. It is recommended that the oregano lippia may be supplied to growing pigs as FA along with excess carbohydrate sources to reduce the production of odorous compounds.

Keywords

References

  1. Aarnink, A. J. A., P. Le Dinh, N. W. M. Ogink, P. M. Becker and M. W. A. Verstegen. 2005. Odour from animal production facilities: its relationship to diet. Nutr. Res. Rev. 18:3-30. https://doi.org/10.1079/NRR200592
  2. Amon, M., T. H. Misselbrook, B. F. Pain, V. R. Phillips and R. W. Sneath. 1995. A farm scale study on the use of de-odorase for reducing odour and ammonia emissions from intensive fattening piggeries. Bioresour. Technol. 51:163-169. https://doi.org/10.1016/0960-8524(94)00107-C
  3. Bailey, S. R., A. Rycroft and J. Elliott. 2002. Production of amines in equine cecal contents in an in vitro model of carbohydrate overload. J. Anim. Sci. 80:2656-2662.
  4. Bengtson, H. 2010. Easy to understand diagram of nutrient cycle.
  5. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
  6. Colina, J. J., A. J. Lewis, P. S. Miller and R. L. Fischer. 2001. Dietary manipulation to reduce aerial ammonia concentrations in nursery pig facilities. J. Anim. Sci. 79:3096-3103.
  7. Cromwell, G. L. 1998. Manipulation of swine diets to reduce odors and harmful gaseous emissions from manure. University of Kentucky.
  8. Cummings, J. H. and G. T. Macfarlane. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Microbiol. 70:443-459. https://doi.org/10.1111/j.1365-2672.1991.tb02739.x
  9. Denaturing Gradient Gel Electrophoresis (DGGE). 2004. Online. Available: http://www.eeescience.utoledo.edu/Faculty/Sigler/Von_Sigler/LEPR_Protocols_files/DGGE.pdf.
  10. Fakhoury, K. J., A. J. Heber, P. Shao and J. Q. Ni. 2000. Correlation of odor detection thresholds with concentrations of hydrogen sulfide, ammonia and trace gases emitted from swine manure. Pages 1-13. American Society of Agricultural Engineers, St Joseph.
  11. Felske, A., A. Wolterink, R. Van Lis and A. D. L. Akkermans. 1998. Phylogeny of the main bacterial 16S rRNA sequences in drentse a grassland soils (The Netherlands). Appl. Environ. Microbiol. 64:871-879.
  12. Gibson, G. R., J. H. Cummings and G. T. Macfarlane. 1988. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J. Appl. Microbiol. 65:241-247. https://doi.org/10.1111/j.1365-2672.1988.tb01891.x
  13. Han, S.-K., S.-H. Kim and H.-S. Shin. 2005. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. Process Biochem. 40:2897-2905. https://doi.org/10.1016/j.procbio.2005.01.005
  14. Hane, B. G., K. Jäger and H. G. Drexler. 1993. The pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14:967-972. https://doi.org/10.1002/elps.11501401154
  15. Hao, O. J., J. M. Chen, L. Huang and R. L. Buglass. 1996. Sulfate-reducing bacteria. Crit. Rev. Environ. Sci. Technol. 26:155-187. https://doi.org/10.1080/10643389609388489
  16. Hayes, E. T., A. B. G. Leek, T. P. Curran, V. A. Dodd, O. T. Carton, V. E. Beattie and J. V. O'Doherty. 2004. The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresour. Technol. 91:309-315. https://doi.org/10.1016/S0960-8524(03)00184-6
  17. Hume, M. E., S. Clemente-Hernández and E. O. Oviedo-Rondon. 2006. Effects of feed additives and mixed eimeria species infection on intestinal microbial ecology of broilers. Poult. Sci. 85:2106-2111. https://doi.org/10.1093/ps/85.12.2106
  18. Jenkins, D. and L. L. Medsker. 1964. Brucine method for the determination of nitrate in ocean, estuarine, and fresh waters. Anal. Chem. 36:610-612. https://doi.org/10.1021/ac60209a016
  19. Jensen, M. T., R. P. Cox and B. B. Jensen. 1995. Microbial production of skatole in the hind gut of pigs given different diets and its relation to skatole deposition in backfat. Anim. Sci. 61:293-304. https://doi.org/10.1017/S1357729800013837
  20. Jensen, M. T. and L. L. Hansen. 2006. Feeding with chicory roots reduces the amount of odorous compounds in colon and rectal contents of pigs. Anim. Sci. 82:369-376.
  21. Killeen, G. F., C. R. Connolly, G. A. Walsh, C. F. Duffy, D. R. Headon and R. F. Power. 1998. The effects of dietary supplementation with Yucca schidigera extract or fractions thereof on nitrogen metabolism and gastrointestinal fermentation processes in the rat. J. Sci. Food Agric. 76:91-99. https://doi.org/10.1002/(SICI)1097-0010(199801)76:1<91::AID-JSFA926>3.0.CO;2-H
  22. Kim, K.-Y., H.-J. Ko, H.-T. Kim, Y.-S. Kim, Y.-M. Roh, C.-M. Lee and C.-N. Kim. 2008. Odor reduction rate in the confinement pig building by spraying various additives. Bioresour. Technol. 99:8464-8469. https://doi.org/10.1016/j.biortech.2007.12.082
  23. Kolmert, Å., P. Wikström and K. B. Hallberg. 2000. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Methods 41:179-184. https://doi.org/10.1016/S0167-7012(00)00154-8
  24. Konstantinov, S. R., F. F. Christine, Z. Wei Yun, A. W. Barbara, K. Jeannette, S. Wolfgang-Bernhard, M. D. V. Willem, D. L. A. Antoon and S. Hauke. 2004. Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Anim. Res. 53:317-324. https://doi.org/10.1051/animres:2004019
  25. Konstantinov, S. R., W.-Y. Zhu, B. A. Williams, S. Tamminga, W. M. de Vos and A. D. L. Akkermans. 2003. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol. Ecol. 43:225-235. https://doi.org/10.1111/j.1574-6941.2003.tb01062.x
  26. Le, P. D., A. J. A. Aarnink and A. W. Jongbloed. 2009. Odour and ammonia emission from pig manure as affected by dietary crude protein level. Livest. Sci. 121:267-274. https://doi.org/10.1016/j.livsci.2008.06.021
  27. Le, P. D., A. J. A. Aarnink, A. W. Jongbloed, C. M. C. V. d. Peet-Schwering, N. W. M. Ogink and M. W. A. Verstegen. 2007. Effects of dietary crude protein level on odour from pig manure. Animal 1:734-744. https://doi.org/10.1017/S1751731107710303
  28. Mackie, R. I., P. G. Stroot and V. H. Varel. 1998. Biochemical identification and biological origin of key odor components in livestock waste. J. Anim. Sci. 76:1331-1342.
  29. Mao, S. Y., G. Zhang and W. Y. Zhu. 2008. Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Anim. Feed Sci. Technol. 140:293-306. https://doi.org/10.1016/j.anifeedsci.2007.04.001
  30. Miner, J. R. 1977. Characterization of odors and other volatile emissions. Agric. Environ. 3:129-137. https://doi.org/10.1016/0304-1131(77)90004-2
  31. Morrison, T. B., J. J. Weis and C. T. Wittwer. 1998. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24:954-958, 960, 962.
  32. Muyzer, G., E. C. de Waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
  33. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127-141. https://doi.org/10.1023/A:1000669317571
  34. Naidu, A. S., X. Xie, D. A. Leumer, S. Harrison, M. J. Burrill and E. A. Fonda. 2002. Reduction of sulfide, ammonia compound, and adhesion properties of Lactobacillus casei strain KE99 in vitro. Curr. Microbiol. 44:196-205. https://doi.org/10.1007/s00284-001-0040-6
  35. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
  36. Nyachoti, C. M., F. O. Omogbenigun, M. Rademacher and G. Blank. 2006. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J. Anim. Sci. 84:125-134.
  37. O'Connell, J. M., T. Sweeney, J. J. Callan and J. V. O'Doherty. 2005. The effect of cereal type and exogenous enzyme supplementation in pig diets on nutrient digestibility, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions from finisher pigs. Anim. Sci. 81:357-364.
  38. Oviedo-Rondon, E. O. 2009. Molecular methods to evaluate effects of feed additives and nutrients in poultry gut microflora. Revista Brasileira de Zootecnia 38:209-225. https://doi.org/10.1590/S1516-35982009001300022
  39. Parker, J., E. O. Oviedo-Rondón, B. A. Clack, S. Clemente-Hernández, J. Osborne, J. C. Remus, H. Kettunen, H. Makivuokko and E. M. Pierson. 2007. Enzymes as feed additive to aid in responses against eimeria species in coccidia-vaccinated broilers fed corn-soybean meal diets with different protein levels. Poult. Sci. 86:643-653. https://doi.org/10.1093/ps/86.4.643
  40. Patra, A. K., D. N. Kamra and N. Agarwal. 2006. Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test. Int. Congr. Ser. 1293:176-179. https://doi.org/10.1016/j.ics.2006.01.025
  41. Rainville, N. and A. Morin. 1985. Change in the volatile fatty acids content of laboratory stored sterilized and non-sterilized swine wastes. Microbios 42:175-182.
  42. Ritter, W. F. 1989. Odour control of livestock wastes: State-of-the-art in North America. J. Agric. Eng. Res. 42:51-62. https://doi.org/10.1016/0021-8634(89)90039-5
  43. Robinson, J. A., W. J. Smolenski, M. L. Ogilvie and J. P. Peters. 1989. In vitro total-gas, $CH_4$, $H_2$, volatile fatty acid, and lactate kinetics studies on luminal contents from the small intestine, cecum, and colon of the pig. Appl. Environ. Microbiol. 55:2460-2467.
  44. SAS. 2002. SAS/STAT. Statistical Analysis Systems for Windows release 9.1. SAS Institute Inc., Cary, NC, USA.
  45. Tabaru, H., E. Kadota, H. Yamada, N. Sasaki and A. Takeuchi. 1988. Determination of volatile fatty acids and lactic acid in bovine plasma and ruminal fluid by high performance liquid chromatography. Japanese J. Vet. Sci. 50:1124-1126. https://doi.org/10.1292/jvms1939.50.1124
  46. Tannock, G. W. 1999. Probiotics: a critical review. Prebiotics. Horizon Scientific Press.
  47. van Beers-Schreurs, H. M. G., M. J. A. Nabuurs, L. Vellenga, H. J. K.-v. d. Valk, T. Wensing and H. J. Breukink. 1998. Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and bood. J. Nutr. 128:947-953.
  48. Wang, J. F., Y. H. Zhu, D. F. Li, Z. Wang and B. B. Jensen. 2004. In vitro fermentation of various fiber and starch sources by pig fecal inocula. J. Anim. Sci. 82:2615-2622.
  49. Windisch, W., K. Schedle, C. Plitzner and A. Kroismayr. 2008. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 86(14 Suppl):E140-E148.
  50. Zhu, J. 2000. A review of microbiology in swine manure odor control. Agric. Ecosyst. Environ. 78:93-106. https://doi.org/10.1016/S0167-8809(99)00116-4
  51. Zhu, W.-Y., B. A. Williams, S. R. Konstantinov, S. Tamminga, W. M. De Vos and A. D. L. Akkermans. 2003. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe 9:175-180. https://doi.org/10.1016/S1075-9964(03)00083-0
  52. Zoetendal, E. G., A. D. L. Akkermans and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.

Cited by

  1. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure vol.28, pp.9, 2015, https://doi.org/10.5713/ajas.15.0078