DOI QR코드

DOI QR Code

Effects of Supplemental Glutamine on Growth Performance, Plasma Parameters and LPS-induced Immune Response of Weaned Barrows after Castration

  • Hsu, C.B. (Kaohsiung Animal Propagation Station, Livestock Research Institute) ;
  • Lee, J.W. (Department of Animal Science, National Chung Hsing University) ;
  • Huang, H.J. (Kaohsiung Animal Propagation Station, Livestock Research Institute) ;
  • Wang, C.H. (Kaohsiung Animal Propagation Station, Livestock Research Institute) ;
  • Lee, T.T. (Department of Biotechnology, Ming Dao University) ;
  • Yen, H.T. (Animal Technology Institute Taiwan) ;
  • Yu, B. (Department of Animal Science, National Chung Hsing University)
  • Received : 2011.10.11
  • Accepted : 2012.02.06
  • Published : 2012.05.01

Abstract

Two experiments were conducted to investigate the effects of supplemental glutamine on growth performance, plasma parameters and LPS-induced immune response of weaned barrows after castration. In experiment 1, forty-eight weaned male piglets were used and fed maize and soybean meal diets supplemented with 0 (Control) or 2% L-Gln (Gln+) for 25 days. The results indicated that the Gln+ group tended to increase average daily gain compared to control in stages of days 7 to 14 and 0 to 25. The Gln+ had significantly better feed efficiency than the control group did during days 14 to 25 and 0 to 25. The plasma blood urea nitrogen and alkaline phosphatase contents of Gln+ group were higher than those of the control group on day 14 post-weaning. In experiment 2, sixteen weaned male piglets were injected with E. coli K88+ lipopolysaccharide (LPS) on day 14 post-weaning. The results showed that the Gln+ group had lower concentrations of plasma adrenocorticotrophic hormone and cortisol than the control group on day 14 pre-LPS challenge. In addition, Gln+ group had higher plasma IgG concentration than the control group for pre- or post-LPS challenged on day 14 post-weaning. In summary, dietary supplementation of Gln was able to alleviate the stressful condition and inflammation associated with castration in weaned barrows, and to improve their immunity and growth performance in the early starter stage.

Keywords

References

  1. Adjei, A. A., Y. Matsumoto, T. Oku, Y. Hiroi and S. Yamamoto. 1994. Dietary arginine and glutamine combination improves survival in septic mice. Nutr. Res. 14:1591-1599. https://doi.org/10.1016/S0271-5317(05)80237-4
  2. Alverdy, J. C. 1990. Glutamine supplemented diets on immunology of the gut. J. Parenter. Enter. Nutr. 14:109S-113S. https://doi.org/10.1177/014860719001400415
  3. Ardawi, M. S. M. and E. A. Newsholme. 1983. Glutamine metabolism in lymphocytes of the rat. Biochem. J. 212:835-842.
  4. Bartell, S. M. and A. B. Batal. 2007. The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poult. Sci. 86:1940-1947. https://doi.org/10.1093/ps/86.9.1940
  5. Bruininx, E. M., C. M. van der Peet-Schwering, J. W. Schrama, P. F. Vereijken, P. C. Vesseur, H. Everts, L. A. den Hartog and A. C. Beynen. 2001. Individually measured feed intake characteristics and growth performance of group-housed weanling pigs: Effects of sex, initial body weight, and body weight distribution within groups. J. Anim. Sci. 79:301-308.
  6. Coeffier, M., S. Claeyssens, B. Hecketsweiler, A. Lavoinne, P. Ducrotte and P. Dechelotte. 2003. Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G266-273.
  7. Fillmann, H., N. A. Kretzmann, B. San-Miguel, S. Llesuy, N. Marroni, J. Gonzalez-Gallego and M. J. Tunon. 2007. Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappaB pathway in an experimental model of colitis in the rat. Toxicology 236:217-226. https://doi.org/10.1016/j.tox.2007.04.012
  8. Guo, G. L., Y. L. Liu, W. Fan, J. Han, Y. Q. Hou, Y. L. Yin, H. L. Zhu, B. Y. Ding, J. X. Shi, J. Lu, H. R. Wang, J. Chao and Y. H. Qu. 2008. Effects of Achyranthes Bidentata polysaccharide on growth performance, immunological, adrenal, and somatotropic responses of weaned pigs challenged with escherichia coli lipopolysaccharide. Asian-Aust. J. Anim. Sci. 21:1189-1195. https://doi.org/10.5713/ajas.2008.70739
  9. Hall, J. C., K. Hell and R. McCaulet. 1996. Glutamine. Br. J. Surg. 83:305-321. https://doi.org/10.1002/bjs.1800830306
  10. Han, J., Y. L. Liu, W. Fan, J. Chao, Y. Q. Hou, Y. L. Yin, H. L. Zhu, G. Q. Meng and Z. Q. Che 2008. Dietary L-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids 37:643-651.
  11. Holecek, M. 2002. Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition 18:130-133. https://doi.org/10.1016/S0899-9007(01)00767-5
  12. Komatsu, W., K. Mawatari, Y. Miura and K. Yagasaki. 2007. Restoration by dietary glutamine of reduced tumor necrosis factor production in a low-protein-diet-fed rat model. Biosci. Biotechnol. Biochem. 71:352-357. https://doi.org/10.1271/bbb.60271
  13. Kong, X. F., Y. Z. Zhang, Y. L. Yin, G. Y. Wu, H. J. Zhou, Z. L. Tan, F. Yang, M. J. Bo, R. L. Huang, T. J. Li and M. M. Geng. 2009. Chinese yam polysaccharide enhances growth performance and cellular immune response in weanling rats. J. Sci. Food Agric. 89:2039-2044. https://doi.org/10.1002/jsfa.3688
  14. Lacey, J. M. and D. W. Wilmore. 1990. Is glutamine a conditionally essential amino acid? Nutr. Rev. 48:297-309.
  15. Le Bacquer, O. L., C. Laboisse and D. Darmaun. 2003. Glutamine preserves protein synthesis and paracellular permeability in Caco-2 cells submitted to "luminal fasting". Am. J. Physiol. Gastrointest. Liver Physiol. 285:G128-136.
  16. Le Floc'h, N. L., D. Melchior and C. Obled. 2004. Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livest. Prod. Sci. 87:37-45. https://doi.org/10.1016/j.livprodsci.2003.09.005
  17. Lee, D. N., Y. H. Cheng, F. Y. Wu, H. Sato, I. Shinzato, S. P. Cheng and H. T. Yen. 2003. Effect of dietary glutamine supplement on performance and intestinal morphology of weaned pigs. Asian-Aust. J. Anim. Sci. 16:1770-1776. https://doi.org/10.5713/ajas.2003.1770
  18. Li, P., Y. L. Yin, D. Li, S. W. Kim and G. Wu. 2007. Amino acids and immune function. Br. J. Nutr. 98:237-252. https://doi.org/10.1017/S000711450769936X
  19. Liu, T., J. Peng, Y. Xiong, S. Zhou and X. Cheng. 2002. Effects of dietary glutamine and glutamate supplementation on small intestinal structure, active absorption and DNA, RNA concentrations in skeletal muscle tissue of weaned piglets during d 28 to 42 of age. Asian-Aust. J. Anim. Sci. 15:238-242. https://doi.org/10.5713/ajas.2002.238
  20. Liu, Y. L., J. J. Huang, Y. Q. Hou, H. L. Zhu, S. J. Zhao, B. Y. Ding, Y. L. Yin, G. F. Yi, J. X. Shi and W. Fan. 2008. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br. J. Nutr. 100:552-560. https://doi.org/10.1017/S0007114508911612
  21. National Research Council. 1998. Nutrient requirements of swine. (10th Rev. Ed.). National Academy Press, Washington, DC, USA.
  22. Newsholme, P. 2001. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection. J. Nutr. 131:2515S-2522S.
  23. Pluske, J. R., D. J. Hampson and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a view. Livest. Prod. Sci. 51:215-236. https://doi.org/10.1016/S0301-6226(97)00057-2
  24. Posho, L., B. Darcy-Vrillon, F. Blachier and P. Duee. 1994. The contribution of glucose and glutamine to energy metabolism in newborn pig enterocytes. J. Nutr. Biochem. 5:284-290. https://doi.org/10.1016/0955-2863(94)90033-7
  25. Prunier, A., A. M. Mounier and M. Hay. 2005. Effects of castration, tooth resection, or tail docking on plasma metabolites and stress hormones in young pigs. J. Anim. Sci. 83:216-222.
  26. SAS, 1999. SAS/STAT user's guide, Release 6.11 Ed. SAS Inst. Inc, Cary, NC, USA.
  27. Shewchuk, L. D., V. E. Baracos and C. J. Field. 1997. Dietary L-glutamine supplementation reduces growth of the Morris hepatoma 7777 in exercise-trained and sedentary rats. J. Nutr. 127:158-166.
  28. Singleton, K. D. and P. E. Wischmeyer. 2008. Glutamine attenuates inflammation and NF-${\kappa}B$ activation via Cullin-1 deneddylation. Biochem. Biophys. Res. Commun. 373:445-449. https://doi.org/10.1016/j.bbrc.2008.06.057
  29. Webel, D. M., B. N. Finck, D. H. Baker and R. W. Johnson. 1997. Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. J. Anim. Sci. 75:1514-1520.
  30. Wilmore, D. W. 2001. The effect of glutamine supplementation in patients following elective surgery and accidental injury. J. Nutr. 131:2543S-2549S.
  31. Wu, G. and D. A. Knabe. 1994. Free and protein-bound amino acids in sow's colostrum and milk. J. Nutr. 124:415-424.
  32. Wu, G., D. A. Knabe, W. Yan and N. E. Flynn. 1995. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am. J. Physiol. 268:R334-R342.
  33. Wu, G., S. A. Meier and D. A. Knabe. 1996. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr. 126:2578-2584.
  34. Wu, G., F. W. Bazer and G. A. Johnson. 2011. Important roles for L-glutamine in swine nutrition and production. J. Anim. Sci. 89:2017-2030. https://doi.org/10.2527/jas.2010-3614
  35. Yao, K., Y. Yin, X. Li, P. Xi, J. Wang, J. Lei, Y. Hou and G. Wu. 2011. Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acid, in press, DOI 10.1007/s00726-011-1060-6.
  36. Yi, G. F., J. A. Carroll, G. L. Allee, A. M. Gaines, D. C. Kendall, J. L. Usry, Y. Toride and S. Izuru. 2005. Effect of glutamine and spray-dried plasma on growth performance, small intestinal morphology, and immune responses of Escherichia coli K88+-challenged weaned pigs. J. Anim. Sci. 83:634-643.
  37. Yin, Y. L., Z. R. Tang, Z. H. Sun, Z. Q. Liu, T. J. Li, R. L. Huang, Z. Ruan, Z. Y. Deng, B. Gao, L. X. Chen, G. Y. Wu and S. W. Kim. 2008. Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity response in early-weaned piglets. Asian-Aust. J. Anim. Sci. 21:723-731. https://doi.org/10.5713/ajas.2008.70408
  38. Yu, B., H. Y. Tsen and P. W. S. Chiou. 1999. Caecal culture enhance performance and prevents Salmonella infection in broilers. J. Appl. Poult. Res. 8:195-204. https://doi.org/10.1093/japr/8.2.195
  39. Yu, I. T., J. F. Wu, P. C. Yang, C. Y. Liu, D. N. Lee and H. T. Yen. 2002. Roles of glutamine and nucleotides in combination in growth, immune responses and FMD antibody titres of weaned pigs. Anim. Sci. 75:379-385.
  40. Zou, X. T., G. H. Zheng, X. J. Fang and J. F. Jiang. 2006. Effects of glutamine on growth performance of weanling piglets. Czech J. Anim. Sci. 51:444-448.

Cited by

  1. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88 vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0061-4
  2. Glutamine Ameliorates Mucosal Damage Caused by Immune Responses to Duck Plague Virus vol.15, pp.2, 2017, https://doi.org/10.1177/1559325817708674
  3. Effects of l-glutamine on rectal temperature and some markers of oxidative stress in Red Sokoto goats during the hot-dry season vol.49, pp.6, 2017, https://doi.org/10.1007/s11250-017-1325-5
  4. Metabolite Genome-Wide Association Study (mGWAS) and Gene-Metabolite Interaction Network Analysis Reveal Potential Biomarkers for Feed Efficiency in Pigs vol.10, pp.5, 2012, https://doi.org/10.3390/metabo10050201
  5. Functional Amino Acids in Pigs and Chickens: Implication for Gut Health vol.8, pp.None, 2021, https://doi.org/10.3389/fvets.2021.663727