DOI QR코드

DOI QR Code

Effects of Dietary Potential Acid Production Value on Productivity in Dairy Cows

  • Kim, E.T. (Division of Applied Life Science (BK21 program), IALS Graduate School of Gyeongsang National University) ;
  • Lee, S.S. (Division of Applied Life Science (BK21 program), IALS Graduate School of Gyeongsang National University) ;
  • Kim, H.J. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Song, J.Y. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, C.H. (School of Animal Life and Environment Science, Hankyong National University) ;
  • Ha, Jong-K. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2012.01.10
  • Accepted : 2012.02.21
  • Published : 2012.05.01

Abstract

This study was conducted to estimate the potential acid production value (PAPV) of major diets and to determine the relationship between dietary PAPV and dairy production traits. Estimation of PAPV of major cattle feeds was based on an in vitro technique, which determined the degree of Ca dissociation from $CaCO_3$. Data on feeds and production traits were collected on 744 multiparous lactating Holstein dairy cows from five different farms. Grains had high PAPV with variable protein sources and by-products. High PAPV feedstuffs had a higher total gas production and lower pH compared to those with low PAPV. Dietary PAPV had a positive correlation with intake of dry matter, NDF, ADF, milk yield and milk solid production but a negative correlation with milk protein and milk fat concentration. Current results indicate that dietary PAPV can be utilized in predicting dairy production traits.

Keywords

References

  1. Allen, M. S. 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80:1447-1462. https://doi.org/10.3168/jds.S0022-0302(97)76074-0
  2. AOAC. 1990. Official methods of analysis. 14th ed. Assoc. Offic. Anal. Chem., Washington DC, USA.
  3. Armentano, L. E. and M. Pereira. 1997. Measuring effectiveness of fiber by animal response trials. J. Dairy Sci. 80:1416-1425. https://doi.org/10.3168/jds.S0022-0302(97)76071-5
  4. Ash, R. W. 1959. Inhibition and excitation of reticulo-rumen contractions following the introduction of acids into the rumen and abomasum. J. Physiol. 147:58-73. https://doi.org/10.1113/jphysiol.1959.sp006221
  5. Choi, Y. J., S. S. Lee, J. Y. Song, N. J. Choi, H. G. Sung, S. G. Yun and J. K. Ha. 2003. Effects of dietry acidogenicity values on rumen fermentation characteristics and nutrients digestibility. Asian-Aust. J. Anim. Sci. 16:1625-1633. https://doi.org/10.5713/ajas.2003.1625
  6. Clark, P. W. and L. E. Armentano. 1993. Effectiveness of neutral detergent fiber in whole cottonseed and dried distillers grains compared with alfalfa haylage. J. Dairy Sci. 76:2644-2650. https://doi.org/10.3168/jds.S0022-0302(93)77600-6
  7. Clark, P. W. and L. E. Armentano. 1997. Replacement of alfalfa NDF with a combination of nonforage fiber sources. J. Dairy Sci. 80:675-680. https://doi.org/10.3168/jds.S0022-0302(97)75986-1
  8. Crawford, R. J. Jr., B. J. Shriver, G. A. Varga and W. H. Hoover. 1983. Buffer requirements for maintenance of pH during fermentation of individual feeds in continuous cultures. J. Dairy Sci. 66:1881-1890. https://doi.org/10.3168/jds.S0022-0302(83)82026-8
  9. Depies, K. K. and L. E. Armentano. 1995. Partial replacement of alfalfa fiber with fiber from ground corn cobs or wheat middlings. J. Dairy Sci. 78:1328-1335. https://doi.org/10.3168/jds.S0022-0302(95)76754-6
  10. Dewhurst, R. J., D. Wadhwa, L. P. Borgida and W. J. Fisher. 2001. Rumen acid production from dairy feeds. 1. Effects on feed intake and milk production of dairy cows offered grass or corn silages. J. Dairy Sci. 84:2721-2729. https://doi.org/10.3168/jds.S0022-0302(01)74726-1
  11. Dunlop, R. H. 1972. Pathogenisis of ruminant lactic acidosis. Adv. Vet. Sci. Comp. Med. 259-302.
  12. Fondevilla, M., C. Castrillo, J. A. Guada and J. Balcells. 1994. Effect of ammonia treatment and carbohydrate supplementation of barley straw on rumen liquid characteristics and substrate degradation by sheep. Anim. Feed Sci. Technol. 50:137-155. https://doi.org/10.1016/0377-8401(94)90015-9
  13. Jasaitis, D. K., J. E. Wohlt and J. L. Evans. 1987. Influence of feed ion content on buffering capacity of ruminant feedstuffs in vitro. J. Dairy Sci. 70:1391-1403. https://doi.org/10.3168/jds.S0022-0302(87)80161-3
  14. Lee, H. J., S. C. Lee, J. D. Kim, Y. G. Oh, B. K. Kim, C. W. Kim and K. J. Kim. 2003. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim. Sci. 16:1143-1150. https://doi.org/10.5713/ajas.2003.1143
  15. Mertens, D. R. 1994. Regulation of forage intake. Page 450 in Forage Quality, Evaluation, and Utilization (Ed. G. C. Fehey, Jr.). Am. Soc. Agron., Madison, WI, USA.
  16. Nocek, J. E. and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 71:2070-2107. https://doi.org/10.3168/jds.S0022-0302(88)79782-9
  17. NRC. 2001. Nutrient requirements of dairy cattle, 7th ed. National Academy Press, Washington, DC, USA.
  18. Oliveira, L. A., C. Jean-Blain, S. Komisarczuk-Bony, A. Durix and C. Durier. 1997. Microbial thiamin metabolism in the rumen simulating fermenter (RUSITEC): the effect of acidogenic conditions, a high sulfur level and added thiamin. Br. J. Nutr. 78:599-613. https://doi.org/10.1079/BJN19970177
  19. Playne, M. L. and P. McDonald. 1966. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 17:264-268. https://doi.org/10.1002/jsfa.2740170609
  20. Poore, M. H., J. A. Moore, R. S. Swingle, T. P. Eck and W. H. Brown. 1991. Wheat straw or alfalfa hay in diets with 30% neutral detergent fiber for lactating Holstein cows. J. Dairy Sci. 74:3152-3159. https://doi.org/10.3168/jds.S0022-0302(91)78500-7
  21. Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 11:1119-1122.
  22. SAS Institute, Inc. 1995. SAS user's guide: Statistics. SAS Inst. Inc. Cary, NC.
  23. Smith, W. R., I. Yu and R. E. Hungate. 1973. Factors affecting celluloysis by Rminococcus albus. J. Bacteriol. 114:729-737.
  24. Song, J. Y. 2005. Standardization of feed acidogenicity value (AV) and effect of different AV diets on rumen fermentation characteristics. (A Thesis For the Degree of Master of Science)
  25. Van Soest, P. J. and J. B. Robertson. 1985. Analysis of forages and fibrous foods. AS 613 Manual, Dep. Anim. Sci., Cornell Univ., Ithaca, NY, USA.
  26. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  27. Van Soest, P. J. 1994. Nutritional ecology of the ruminant, Second Edition. Cornell University Press, Ithaca, New York, USA.
  28. Wadhwa, D., L. P. Borgida, M. S. Dhanoa and R. J. Dewhurst. 2001b. Rumen acid production from dairy feeds. 2. Effects of diets based on corn silage on feed intake and milk yield. J. Dairy Sci. 84:2730-2737. https://doi.org/10.3168/jds.S0022-0302(01)74727-3
  29. Wadhwa, D., N. F. Beck, L. P. Borgida, M. S. Dhanoa and R. J. Dewhurst. 2001a. Development of a simple in vitro assay for estimating net rumen acid load from diet ingredients. J. Dairy Sci. 84:1109-1117. https://doi.org/10.3168/jds.S0022-0302(01)74571-7
  30. Welch, J. G. and A. M. Smith. 1969. Influence of forage quality on rumination time in sheep. J. Anim. Sci. 28:813-818.

Cited by

  1. An Investigation into Rumen Fungal and Protozoal Diversity in Three Rumen Fractions, during High-Fiber or Grain-Induced Sub-Acute Ruminal Acidosis Conditions, with or without Active Dry Yeast Supplementation vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01943
  2. In vitro biodegradation of cyanotoxins in the rumen fluid of cattle vol.10, pp.None, 2012, https://doi.org/10.1186/1746-6148-10-110