DOI QR코드

DOI QR Code

Silica in Water: A Potentially Valuable Reaction Medium for the Synthesis of Pyrano[2,3-c]pyrazoles

  • Shinde, Pravin V. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Gujar, Jitendra B. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingate, Bapurao B. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingare, Murlidhar S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • 투고 : 2011.11.27
  • 심사 : 2012.01.03
  • 발행 : 2012.04.20

초록

키워드

참고문헌

  1. Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH: Weinheim, Germany, 2005
  2. Domling, A. Chem. Rev. 2006, 106, 17. https://doi.org/10.1021/cr0505728
  3. Zhu, J. Eur. J. Org. Chem. 2003, 1133.
  4. Orru, R. V. A.; de Greef, M. Synthesis 2003, 1471.
  5. Ramon, D. J.; Yus, M. Angew. Chem. Int. Ed. 2005, 44, 1602. https://doi.org/10.1002/anie.200460548
  6. Tietze, L. F. Chem. Rev. 1996, 96, 115. https://doi.org/10.1021/cr950027e
  7. Arya, P.; Joseph, R.; Chou, D. T. H. Chem. Biol. 2002, 9, 145. https://doi.org/10.1016/S1074-5521(02)00105-9
  8. Tietze, L. F.; Rackelmann, N. Pure Appl. Chem. 2004, 76, 1967. https://doi.org/10.1351/pac200476111967
  9. Enders, D.; Grondal, C.; Huettl, M. R. M. Angew. Chem. Int. Ed. 2007, 46, 1570. https://doi.org/10.1002/anie.200603129
  10. Pinto, A.; Neuville, L.; Zhu, J. Angew. Chem. Int. Ed. 2007, 46, 3291 https://doi.org/10.1002/anie.200605192
  11. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
  12. Eissen, M.; Metzger, J. O.; Schmidt, E.; Schneidewind, V. Angew. Chem. Int. Ed. 2002, 41, 414. https://doi.org/10.1002/1521-3773(20020201)41:3<414::AID-ANIE414>3.0.CO;2-N
  13. Anastas, P. T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686. https://doi.org/10.1021/ar010065m
  14. Smith, G. V.; Notheisz, F. Heterogeneous Catalysis in Organic Chemistry; Academic Press: 1999.
  15. Iller, R. K. The Chemistry of Silica; John Wiley & Sons: New York, 1979.
  16. Ismail, H. M.; Monsour, S. A. A.; Zaki, M. I. Thermochim. Acta 1992, 202, 269. https://doi.org/10.1016/0040-6031(92)85171-Q
  17. Takei, T.; Eriguchi, E.; Fuji, M.; Watanabe, T.; Chikazawa, M. Thermochim. Acta 1998, 308, 139. https://doi.org/10.1016/S0040-6031(97)00341-9
  18. McKillop, A.; Young, D. W. Synthesis 1979, 401.
  19. McKillop, A.; Young, D. W. Synthesis 1979, 481.
  20. Kropp, P. J.; Breton, G. W.; Craig, S. L.; Crawford, S. D.; Durland, W. F., Jr.; Jones, J. E., III.; Raleigh, J. S. J. Org. Chem. 1995, 60, 4146 https://doi.org/10.1021/jo00118a035
  21. Breton, G. W.; Fields, J. D.; Kropp, P. J. Tetrahedron Lett. 1995, 36, 3825. https://doi.org/10.1016/0040-4039(95)00688-9
  22. Matsumoto, Y.; Mita, K.; Hashimoto, K.; Iio, H.; Tokoroyama, T. Tetrahedron 1996, 52, 9387. https://doi.org/10.1016/0040-4020(96)00501-7
  23. Minakata, S.; Kano, D.; Oderaotoshi, Y.; Komatsu, M. Angew. Chem. Int. Ed. 2004, 43, 79. https://doi.org/10.1002/anie.200352842
  24. Minakata, S.; Hotta, T.; Oderaotoshi, Y.; Komatsu, M. J. Org. Chem. 2006, 71, 7471. https://doi.org/10.1021/jo061239m
  25. Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous Media; Wiley: Chichester, UK, 1997
  26. Grieco, P. A. Organic Synthesis in Water; Blake Academic and Professional: London, 1998.
  27. Kuo, S. C.; Huang, L. J.; Nakamura, H. J. Med. Chem. 1984, 27, 539. https://doi.org/10.1021/jm00370a020
  28. Wang, J. L.; Liu, D.; Zhang, Z. J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 7124. https://doi.org/10.1073/pnas.97.13.7124
  29. Zaki, M. E. A.; Soliman, H. A.; Hiekal, O. A.; Rashad, A. E. Z. Naturforsch. C. 2006, 61, 1. https://doi.org/10.1515/znc-2006-1-201
  30. Foloppe, N.; Fisher, L. M.; Howes, R.; Potter, A.; Robertson, A. G. S.; Surgenor, A. E. Bioorg. Med. Chem. 2006, 14, 4792. https://doi.org/10.1016/j.bmc.2006.03.021
  31. Stachulski, A. V.; Berry, N. G.; Lilian Low, A. C.; Moores, S. L.; Row, E.; Warhurst, D. C.; Adagu, I. S.; Rossignol, J. F. J. Med. Chem. 2006, 49, 1450. https://doi.org/10.1021/jm050973f
  32. Sun, W.; Cama, L. J.; Birzin, E. T.; Warrier, S.; Locco, L.; Mosely, R.; Hammond, M. L.; Rohrer, S. P. Bioorg. Med. Chem. Lett. 2006, 16, 1468. https://doi.org/10.1016/j.bmcl.2005.12.057
  33. Junek, H.; Aigner, H. Chem. Ber. 1973, 106, 914. https://doi.org/10.1002/cber.19731060323
  34. Peng, Y.; Song, G.; Dou, R. Green Chem. 2006, 8, 573. https://doi.org/10.1039/b601209d
  35. Vasuki, G.; Kumaravel, K. Tetrahedron Lett. 2008, 49, 5636. https://doi.org/10.1016/j.tetlet.2008.07.055
  36. Gogoi, S.; Zhao, C.-G. Tetrahedron Lett. 2009, 50, 2252. https://doi.org/10.1016/j.tetlet.2009.02.210
  37. Kanagaraj, K.; Pitchumani, K. Tetrahedron Lett. 2010, 51, 3312. https://doi.org/10.1016/j.tetlet.2010.04.087
  38. Reddy, M. B. M.; Jayashankara, V. P.; Pasha, M. A. Synth. Commun. 2010, 40, 2930. https://doi.org/10.1080/00397910903340686
  39. Mecadon, H.; Rohman, M. R.; Rajbangshi, M.; Myrboh, B. Tetrahedron Lett. 2011, 52, 2523. https://doi.org/10.1016/j.tetlet.2011.03.036
  40. Mecadon, H.; Rohman, M. R.; Kharbangar, I.; Laloo, B. M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B. Tetrahedron Lett. 2011, 52, 3228. https://doi.org/10.1016/j.tetlet.2011.04.048
  41. Babaie, M.; Sheibani, H. Arabian J. Chem. 2011, 4, 159. https://doi.org/10.1016/j.arabjc.2010.06.032
  42. Samant, S. D.; Patil, N. R.; Kshirsagar, S. W. Synth. Commun. 2011, 41, 1320. https://doi.org/10.1080/00397911.2010.481753
  43. Shinde, P. V.; Sonar, S. S.; Shingate, B. B.; Shingare, M. S. Tetrahedron Lett. 2010, 51, 1309. https://doi.org/10.1016/j.tetlet.2009.12.146
  44. Shinde, P. V.; Kategaonkar, A. H.; Shingate, B. B.; Shingare, M. S. Beilstein J. Org. Chem. 2011, 7, 53. https://doi.org/10.3762/bjoc.7.9
  45. Shinde, P. V.; Labade, V. B.; Shingate, B. B.; Shingare, M. S. J. Mol. Cat. A: Chemical 2011, 336, 100. https://doi.org/10.1016/j.molcata.2011.01.005
  46. Clark, J. H. Chemistry of Waste Minimisation; Chapman and Hall: London, 1995.
  47. Clark J. H.; Macquarrie, D. J. Chem. Soc. Rev. 1996, 25, 303. https://doi.org/10.1039/cs9962500303
  48. Li, C.-J. Chem. Rev. 2005, 105, 3095. https://doi.org/10.1021/cr030009u
  49. Lindstrom, U. M. Organic Reactions in Water; Blackwell: Oxford, UK 2007.

피인용 문헌

  1. ZnO Nanoparticles as an Efficient, Heterogeneous, Reusable, and Ecofriendly Catalyst for Four-Component One-Pot Green Synthesis of Pyranopyrazole Derivatives in Water vol.2013, pp.1537-744X, 2013, https://doi.org/10.1155/2013/680671
  2. Fast synthesis of pyrano[2,3-c]pyrazoles: strong effect of Brönsted and Lewis acidic ionic liquids vol.12, pp.6, 2015, https://doi.org/10.1007/s13738-014-0561-0
  3. ]pyrazoles from benzyl halides pp.1532-2432, 2018, https://doi.org/10.1080/00397911.2017.1386788
  4. Synthesis of Pyranopyrazoles Using Magnetically Recyclable Heterogeneous Iron Oxide-silica Core-shell Nanocatalyst vol.62, pp.12, 2015, https://doi.org/10.1002/jccs.201400387
  5. One-pot multicomponent synthesis in aqueous medium of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and derivatives using a green and reusable nano-SiO2 catalyst from agricultural waste vol.44, pp.1, 2012, https://doi.org/10.1007/s11164-017-3104-3
  6. Greener and Environmentally Benign Methodology for the Synthesis of Pyrazole Derivatives vol.5, pp.42, 2020, https://doi.org/10.1002/slct.202003008
  7. Natural surfactants assisted an efficient synthesis of tetrahydro-β-carbolines vol.3, pp.None, 2012, https://doi.org/10.1016/j.rechem.2021.100183
  8. Green Methods for the Synthesis of Pyrazoles: A Review vol.53, pp.4, 2012, https://doi.org/10.1080/00304948.2021.1904750