DOI QR코드

DOI QR Code

Preparation of Self-Assembled Crystalline Microparticles with Bispyridyl Zn-Porphyrin

  • Lee, Da-Hee (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Lee, Suk-Joong (Department of Chemistry, Research Institute for Natural Sciences, Korea University)
  • 투고 : 2011.12.26
  • 심사 : 2012.01.30
  • 발행 : 2012.04.20

초록

Well-defined solid-state microcrystalline structures from bispyridyl Zn-porphyrin have been successfully synthesized. The coordinative interactions between pyridine and Zn are main responsible for this translation of porphyrin molecular building blocks to crystalline microscopic objects. The hexagonal plates are obtained from acetonitrile and rhombus plates are grown from toluene solution. With a simple manipulation during the microcrystal growth, such as growth temperature and time, the morphologies can be controlled by adopting different molecular packing. Consequently, morphologies of microcrystals have been diversified.

키워드

참고문헌

  1. An, Z.; Odom, S. A.; Kelley, R. F.; Huang, C.; Zhang, X.; Barlow, S.; Padilha, L. A.; Fu, J.; Hagan, D. J.; Van Stryland, E. W.; Wasielewski, M. R.; Marder, S. R. J. Phys. Chem. A 2009, 113, 5585. https://doi.org/10.1021/jp900152r
  2. Cui, S.; Liu, H.; Gan, L.; Li, Y.; Zhu, D. Adv. Mater. 2008, 20, 2918. https://doi.org/10.1002/adma.200800619
  3. Zhou, W. D.; Li, Y. L.; Zhu, D. B. Chem. Asian J. 2007, 2, 222. https://doi.org/10.1002/asia.200600218
  4. Jiang, A. J.; Ng, D. K. P. Acc. Chem. Res. 2009, 42, 4279.
  5. Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. J. Am. Chem. Soc. 2008, 130, 11623. https://doi.org/10.1021/ja802493v
  6. Hoang, M. H.; Kim, S.-J.; Kim, Y.; Choi, D. H.; Lee, S. J. Chem. Eur. J. 2011, 17, 7772. https://doi.org/10.1002/chem.201100599
  7. Martin, K. E.; Wang, Z.; Busani, T.; Garcia, R. M.; Chen, Z.; Jiang, Y.; Song, Y.; Jacobsen, J. L.; Vu, T. T.; Schore, N. E.; Swartzentruber, B. S.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2010, 132, 8194. https://doi.org/10.1021/ja102194x
  8. Zhu, P.; Ma, P.; Wang, Y.; Wang, Q.; Zhao, X.; Zhang, X. Eur. J. Inorg. Chem. 2011, 27, 4241.
  9. Ryu, E.-H.; Lee, J. H.; Lee, Y. S.; Gu, J.-M.; Huh, S.; Lee, S. J. Inorg. Chem. Comm. 2011, 14, 1648.
  10. Drain, C. M.; Varotto, A.; Radivojevic, I. Chem. Rev. 2009, 109, 1630. https://doi.org/10.1021/cr8002483
  11. Vlaming, S. M.; Augulis, R.; Stuart, M. C. A.; Knoester, J.; Van Loosdrecht, P. H. M. J. Phys. Chem. B 2009, 113, 2273. https://doi.org/10.1021/jp808235c
  12. Wang, Z.; Lybarger, L. E.; Wang, W.; Medforth, C. J.; Miller, J. E.; Shelnutt, J. A. Nanotechnology 2008, 19, 395604/1.
  13. Kimura, M.; Narikawa, H.; Ohta, K.; Hanabusa, K. Chem. Mater. 2002, 14, 2711. https://doi.org/10.1021/cm020222r
  14. Huang, X.; Zhao, F.; Li, Z.; Tang, Y.; Zhang, F.; Tung, C. Langmuir 2007, 23, 5167. https://doi.org/10.1021/la062326c
  15. De la Escosura, A.; Díaz, M. V. M.; Thoedarson, P.; Rowan, A. E.; Nolte, R. J. M.; Torres, T. J. Am. Chem. Soc. 2003, 125, 12300. https://doi.org/10.1021/ja030038m
  16. Chen, P.; Ma, X.; Liu, M. Macromolecules 2007, 40, 4780. https://doi.org/10.1021/ma070681j
  17. Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596. https://doi.org/10.1021/ar800030w
  18. Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hägele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem. Int. Ed. 2007, 46, 4832. https://doi.org/10.1002/anie.200604203
  19. Medforth, C. J.; Wang, Z.; Martin, K. E.; Song, Y.; Jacobsenc, J. L.; Shelnutt, J. A. Chem. Commun. 2009, 7261.
  20. Iavicoli, P.; Simon-Sorbed, M.; Amabilino, D. B. New J. Chem. 2009, 33, 358. https://doi.org/10.1039/b815177f
  21. Lee, J. H.; Ryu, E.-H.; Kim, S.; Lee, S. J. Bull. Korean Chem. Soc. 2011, 32, 609. https://doi.org/10.5012/bkcs.2011.32.2.609
  22. Lee, S. J.; Mulfort, K. L.; Zuo, X.; Goshe, A. J.; Wesson, P. J.; Nguyen, S. T.; Hupp, J. T.; Tiede, D. M. J. Am. Chem. Soc. 2008, 130, 836. https://doi.org/10.1021/ja077661h
  23. DiMagno, S. G.; Lin, S. Y. V.; Therien, M. J. J. Org. Chem. 1993, 58, 5983. https://doi.org/10.1021/jo00074a027
  24. DiMagno, S. G.; Lin, S. Y. V.; Therien, M. J. J. Am. Chem. Soc. 1993, 115, 2513. https://doi.org/10.1021/ja00059a060
  25. Kim, J. B.; Adler, A. D.; Longo, F. R. In The Porphyrins; Dolphin, D., Ed.; Academic Press: London, 1978; Vol. I.
  26. Wilson, G. S.; Anderson, H. L. Chem. Commun. 1999, 1539.
  27. Lee, S. J.; Mulfort, K. L.; O'Donnell, J. L.; Zuo, X.; Goshe, A. J.; Wesson, P. J.; Nguyen, S. T.; Hupp, J. T.; Tiede, D. M. Chem. Comm. 2006, 4581.
  28. Medforth, C. J.; Wang, Z.; Martin, K. E.; Song, Y.; Jacobsenc, J. L.; Shelnutt, J. A. Chem. Commun. 2009, 7261.
  29. Lee, S. J.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Adv. Mater. 2008, 20, 3543. https://doi.org/10.1002/adma.200800003
  30. Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2007, 129, 2440. https://doi.org/10.1021/ja068250o
  31. Gao, Y.; Zhang, X.; Ma, C.; Li, X.; Jiang, J. J. Am. Chem. Soc. 2008, 130, 17044. https://doi.org/10.1021/ja8067337
  32. Sendt, K.; Johnston, L. A.; Hough, W. A.; Crossley, M. J.; Hush, N. S.; Reimers, J. R. J. Am. Chem. Soc. 2002, 124, 9299. https://doi.org/10.1021/ja020081u
  33. Hunter, C. A.; Sanders, J. K. M.; Stone, A. J. Chem. Phys. 1989, 133, 395. https://doi.org/10.1016/0301-0104(89)80221-6
  34. Martin, K. E.; Wang, Z.; Busani, T.; Garcia, R. M.; Chen, Z.; Jiang, Y.; Song, Y.; Jacobsen, J. L.; Vu, T. T.; Schore, N. E.; Swartzentruber, B. S.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2010, 132, 8194. https://doi.org/10.1021/ja102194x
  35. Li, D.; Huang, K. K.; Hua, B.; Shia, Z.; Wang, G.; Feng, S. H. J. Mol. Struc. 2009, 938, 82. https://doi.org/10.1016/j.molstruc.2009.09.008