DOI QR코드

DOI QR Code

The Co-luminescence Groups of Sm-La-pyridyl Carboxylic Acids and the Binding Characteristics between the Selected Doped Complex and Bovine Serum Albumin

  • Yang, Zhengfa (School of Chemistry and Chemical Engineering, Central South University) ;
  • Tang, Ruiren (School of Chemistry and Chemical Engineering, Central South University) ;
  • Tang, Chunhua (School of Chemistry and Chemical Engineering, Central South University)
  • Received : 2011.12.04
  • Accepted : 2012.01.29
  • Published : 2012.04.20

Abstract

A novel ligand N,N'-(2,6-pyridinedicarbonyl)bis[N-(carboxymethyl)] (L1) was designed and synthesized. Four co-luminescence groups of Sm-La-pyridyl carboxylic acids systems were researched, which are $K_4Sm_{(1-x)}-La_x(L_1)Cl_3{\cdot}y_1H_2O$, $K_4Sm_{(1-x)}La_x(L_2)Cl_3{\cdot}y_2H_2O$, $K_6Sm_{2(1-x)}La_{2x}(L_3)Cl_6{\cdot}y_3H_2O$, $K_4Sm_{(1-x)}La_x(L_4)Cl_3{\cdot}y_4H_2O$. The results indicated the addition of La(III) could sensitize the luminescence of Sm(III) obviously in a certain range, enhancing emission intensity of Sm-pyridyl carboxylic acids relative to the undoped ones. The optimal mole percentages of La(III) in the mixed ions for $L_1$, $L_2$, $L_3$, $L_4$ were confirmed to be 0.6, 0.5, 0.3, 0.6, respectively. The mechanism of the fluorescence enhancement effect was discussed in detail. Furthermore, the binding interaction of $K_4Sm_{0.4}La_{0.6}(L_4)Cl_3{\cdot}5H_2O$ with bovine serum albumin (BSA) have been investigated due to its potential biological activity. The binding site number n was equal to 1.0 and binding constant $K_a$ was about $2.5{\times}10^5\;L{\cdot}mol^{-1}$.

Keywords

References

  1. Eliseeva, S. V.; Claude, J.; Bunzli, G. Chem. Rev. 2010, 39, 189. https://doi.org/10.1039/b905604c
  2. de Sa, G. F.; Malta O. L.; de Mello Donega, C.; Simas, A. M.; Longo, R. L.; Santa-Cruz, P. A.; da Silva, E. F., Jr. Coord. Chem. Rev. 2000, 196, 165. https://doi.org/10.1016/S0010-8545(99)00054-5
  3. Li, Y.; Zhao, Y. L. J. Fluoresc. 2009, 19, 641. https://doi.org/10.1007/s10895-008-0456-5
  4. Chen, J.; Selvin, P. R. J. Photochem. Photobiol. A 2000, 135, 27. https://doi.org/10.1016/S1010-6030(00)00280-X
  5. Nurchi, V.; Crisponi, G.; Ganadu, M. L. Anal. Chim. Acta 1990, 239, 157. https://doi.org/10.1016/S0003-2670(00)83847-7
  6. Gu, G. L.; Tang, R. R.; Zheng, Y. H.; Shi, X. M. Spectrochim. Acta, Part A 2008, 71, 209. https://doi.org/10.1016/j.saa.2007.12.006
  7. Adams, M. J.; Highfield, J. G.; Kirkbright, G. F. Anal. Chem. 1980, 52, 1260. https://doi.org/10.1021/ac50058a024
  8. Yang, J. H.; Zhu, G. Y.; Wang, H. Anal. Chim. Acta 1987, 198, 287. https://doi.org/10.1016/S0003-2670(00)85030-8
  9. Ci, Y. X.; Lan, Z. H. Analyst (Lond.) 1988, 113, 1453. https://doi.org/10.1039/an9881301453
  10. Yang, Y. T.; Zhang, S. Y.; Su, Q. D. Mater. Res. Bull. 2005, 40, 1010. https://doi.org/10.1016/j.materresbull.2005.02.014
  11. Tang, R. R.; Zhao, Q.; Yan, Z. E.; Luo, Y. M. Synth. Commn. 2006, 36, 2027. https://doi.org/10.1080/00397910600634381
  12. Tang, C. Q.; Tang, R. R.; Tang, C. H.; Zeng, Z. W. Bull. Korean Chem. Soc. 2010, 31, 2.
  13. Tang, R. R.; Tang, C. H.; Tang, C. Q. J. Organomet. Chem. 2011, 696, 2040. https://doi.org/10.1016/j.jorganchem.2010.10.059
  14. Xiong, B. K. J. Chin. Rare Earth Soc. 1994, 12, 265.
  15. Olson, R. E.; Christ, D. D. Annu. Rep. Med. Chem. 1996, 31, 327. https://doi.org/10.1016/S0065-7743(08)60472-8
  16. Li, L.; Yang, J. H.; Wu, X.; Sun, C. X. J. Lumin. 2003, 101, 141. https://doi.org/10.1016/S0022-2313(02)00406-4
  17. Zhou, Z. C.; Shu, W. G.; Ruan, J. M.; Huang, B. Y. Rare Met. 2004, 23, 306.
  18. Tao, D. L.; Zhang, T.; Xu, Y. Z.; Xu, Z.; Gao, X.; Zhang, Y. P.; Xu, J. G.; Xu, X. R. J. Chin. Rare Earth. Soc. 2001, 19, 543.
  19. Guo, C. C.; Li, H. P.; Zhang, X. B.; Tong. X. B. Chem. J. Chinese Univ. 2003, 24, 282.
  20. Wang, J.; Liu, L.; Liu, B.; Guo, Y.; Zhang, Y.; Xu, R.; Wang, S.; Zhang, X. Spectrochim. Acta. Part A 2010, 75, 366. https://doi.org/10.1016/j.saa.2009.10.042
  21. Bhattacharyya, M.; Chaudhuri, U.; Poddar, R. K. Biochem. Biophys. Res. Commun. 1990, 167, 1146. https://doi.org/10.1016/0006-291X(90)90643-2
  22. Guo, J.; Han, X. W.; Tong, J.; Guo, C.; Yang, W. F.; Zhu, J. F.; Fu, B. J. Mol. Struct. 2010, 966, 129. https://doi.org/10.1016/j.molstruc.2009.12.025
  23. Liu, Y. C.; Yang, Z. Y. J. Organomet. Chem. 2009, 694, 3091. https://doi.org/10.1016/j.jorganchem.2009.05.031
  24. Zhou, N.; Liang, Y. Z.; Wang, P. J. Photochem. Photobio. A: Chem. 2007, 185, 271. https://doi.org/10.1016/j.jphotochem.2006.06.019
  25. Ware, W. R. J. Phys. Chem. 1962, 66, 455. https://doi.org/10.1021/j100809a020
  26. Kang, J.; Liu, Y.; Xie, M. X.; Li, S.; Jiang, M.; Wang, Y. D. BBAGene Subjects. 2004, 1674, 205. https://doi.org/10.1016/j.bbagen.2004.06.021
  27. Sun, Y. T.; Zhang, H. T.; Sun, Y.; Zhang, Y. P.; Liu, H.; Cheng, J. H.; Bi, S. Y.; Zhang, H. Q. J. Lumin. 2010, 130, 270. https://doi.org/10.1016/j.jlumin.2009.09.002

Cited by

  1. Pyridine Polyaminocarboxylate Ligands for Use as Actinide-selective Holdback Reagents in Simplified TALSPEAK-like Extraction Systems vol.38, pp.4, 2012, https://doi.org/10.1080/07366299.2020.1741124