DOI QR코드

DOI QR Code

Effect of pH on the Iron Autoxidation Induced DNA Cleavage

  • Kim, Jong-Moon (Department of Chemistry, Yeungnam University) ;
  • Oh, Byul-Nim (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Jin-Heung (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Seog-K. (Department of Chemistry, Yeungnam University)
  • Received : 2012.01.02
  • Accepted : 2012.01.27
  • Published : 2012.04.20

Abstract

Fenton reaction and iron autoxidation have been debated for the major process in ROS mediated DNA cleavage. We compared both processes on iron oxidation, DNA cleavage, and cyclic voltammetric experiment at different pHs. Both oxidation reactions were preferred at basic pH condition, unlike DNA cleavage. This indicates that iron oxidation and the following steps probably occur separately. The ROS generated from autoxidation seems to be superoxide radical since sod exerted the best inhibition on DNA cleavage when $H_2O_2$ was absent. In comparison of cyclic voltammograms of $Fe^{2+}$ in NaCl solution and phosphate buffer, DNA addition to phosphate buffer induced significant change in the redox cycle of iron, indicating that iron may bind DNA as a complex with phosphate. Different pulse voltammogram in the presence of ctDNA suggest that iron ions are recyclable at acidic pH, whereas they may form an electrically stable complex with DNA at high pH condition.

Keywords

References

  1. Jang, K. J.; Yeo, G.-Y.; Cho, T. S.; Eom, G. H.; Kim, C.; Kim, S. K. Biophys. Chem. 2010, 148, 138. https://doi.org/10.1016/j.bpc.2010.03.009
  2. Kruszewski, M. Mut. Res. 2003, 531, 81. https://doi.org/10.1016/j.mrfmmm.2003.08.004
  3. Kakhlon, O.; Cabantchik, Z. I. Free Radical Biol. Med. 2002, 33, 1037. https://doi.org/10.1016/S0891-5849(02)01006-7
  4. Haber, F.; Weiss, J. J. Proc. R. Soc. Lond. A 1934, 147, 332. https://doi.org/10.1098/rspa.1934.0221
  5. Walling, C. Acc. Chem. Res. 1975, 8, 125. https://doi.org/10.1021/ar50088a003
  6. Aruoma, O. I.; Halliwell, B.; Dizdaroglu, M. J. Biol. Chem. 1989, 264, 13024.
  7. Meneghini, R. Free Radical Biol. Med. 1997, 23, 783. https://doi.org/10.1016/S0891-5849(97)00016-6
  8. Halliwell, B.; Aruoma, O. I. FEBS Lett. 1991, 281, 9. https://doi.org/10.1016/0014-5793(91)80347-6
  9. Halliwell, B.; Dizdaroglu, M. Free Radic. Res. Commun. 1992, 16, 75. https://doi.org/10.3109/10715769209049161
  10. Goldstein, S.; Meyerstein, D.; Czapski, G. Free Radical Biol. Med. 1993, 15, 435. https://doi.org/10.1016/0891-5849(93)90043-T
  11. Halliwell, B. Free Radical Biol. Med. 2009, 46, 531. https://doi.org/10.1016/j.freeradbiomed.2008.11.008
  12. Luo, Y.; Han, Z.; Chin, S. M.; Linn, S. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 12438. https://doi.org/10.1073/pnas.91.26.12438
  13. Rush, J. D.; Koppenol, W. H. J. Biol. Chem. 1986, 261, 6730.
  14. Wardman, P.; Candeias, L. P. Radiat. Res. 1996, 145, 523. https://doi.org/10.2307/3579270
  15. Wink, D. A.; Nims, R. W.; Saavedra, J. E.; Utermahlen, W. E.; Ford, P. C. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 6604. https://doi.org/10.1073/pnas.91.14.6604
  16. Reinke, L. A.; Rau, J. M.; McCay, P. B. Free Rad. Biol. Med. 1994, 16, 485. https://doi.org/10.1016/0891-5849(94)90126-0
  17. Urba ski, N. K.; Ber sewicz, A. Acta Biochim. Pol. 2000, 47, 951.
  18. Biaglow, J. E.; Kachur, A. V. Radiat. Res. 1997, 148, 181. https://doi.org/10.2307/3579576
  19. Flemmig, J.; Arnhold, J. Eur. Biophys. J. 2007, 36, 377. https://doi.org/10.1007/s00249-006-0093-3
  20. Wang, W.; Lee, G. J.; Jang, K. J.; Cho, T. S.; Kim, S. K. Nucl. Acids Res. 2008, 36, e85. https://doi.org/10.1093/nar/gkn370
  21. Qian, S. Y.; Buettner, G. R. Free Radical. Biol. Med. 1999, 26, 1447. https://doi.org/10.1016/S0891-5849(99)00002-7
  22. Kachur, A. V.; Manevich, Y.; Biaglow, J. E. Free Radical Res. 1997, 26, 399. https://doi.org/10.3109/10715769709084476
  23. Svoboda, P.; Harms-Ringdahl, M. Biochim. Biophys. Acta, Gen. Subj. 2002, 1571, 45. https://doi.org/10.1016/S0304-4165(02)00205-2
  24. Welch, K. D.; Davis, T. Z.; Aust, S. D. Arch. Biochem. Biophys. 2002, 397, 360. https://doi.org/10.1006/abbi.2001.2694
  25. Sawyer, D. T.; Sobkowiak, A.; Matsushita, T. Acc. Chem. Res. 1996, 29, 409. https://doi.org/10.1021/ar950031c
  26. Youngman, R. J.; Elstner, E. F. FEBS Lett. 1981, 129, 265. https://doi.org/10.1016/0014-5793(81)80180-9
  27. Saran, M.; Michel, C.; Stettmaier, K.; Bors, W. Free Radical Res. 2000, 33, 567. https://doi.org/10.1080/10715760000301101
  28. Burkitt, M. J.; Gilbert, B. C. Free Radical Res. Commun. 1991, 14, 107. https://doi.org/10.3109/10715769109094123
  29. Tadolini, B.; Sechi, A. M. Free Radical Res. Commun. 1987, 4, 161. https://doi.org/10.3109/10715768709088101
  30. Brestel, E. P. Biochem. Biophys. Res. Commun. 1985, 126, 482. https://doi.org/10.1016/0006-291X(85)90631-X
  31. Piette, J. J. Photochem. Photobiol. B 1991, 11, 241. https://doi.org/10.1016/1011-1344(91)80030-L
  32. Epe, B. Chem.-Biol. Interact. 1991, 80, 239. https://doi.org/10.1016/0009-2797(91)90086-M
  33. Kim, J. M.; Kim, S. K. Bull. Korean Chem. Soc. 2011, 32, 964. https://doi.org/10.5012/bkcs.2011.32.3.964
  34. Martell, A. E.; Smith, R. M. Critical Stability Constants; Plenum: New York, 1988; p 5.

Cited by

  1. vol.20, pp.1, 2014, https://doi.org/10.1111/hel.12171
  2. O hollow octahedra and their application for DNA separation pp.1548-0046, 2017, https://doi.org/10.1080/02726351.2017.1295292