DOI QR코드

DOI QR Code

Rational Design of Coordination Polymers with Flexible Oxyethylene Side Chains

  • Choi, Eun-Young (Department of Molecular Science and Technology, Ajou University) ;
  • Gao, Chun-Ji (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Suck-Hyun (Department of Molecular Science and Technology, Ajou University) ;
  • Kwon, O-Pil (Department of Molecular Science and Technology, Ajou University)
  • Received : 2011.11.22
  • Accepted : 2012.01.13
  • Published : 2012.04.20

Abstract

We rationally designed and synthesized metallopolymers with organic 1,4-benzenedicarboxylic acid (BDC) linkers with different lengths of oxyethylene side chains in order to examine the influence of side chains on the coordination characteristics. While in a previous report the BDC linkers with alkyl side chains were found to form three-dimensional (3D) isoreticular metal-organic framework (IRMOF) structures or one-dimensional (1D) coordination polymeric structures with short $-O(CH_2)_6CH_3$ or long $-O(CH_2)_9CH_3$ side chains, respectively, new BDC linkers with oxyethylene side chains of the same lengths, $-(OCH_2CH_2)_2CH_3$ and $-(OCH_2CH_2)_3CH_3$, form only 3D IRMOF structures. This result is attributed to the higher flexibility and smaller volume of oxyethylene side chains compared to alkyl side chains.

Keywords

References

  1. George, R. W.; Manner, I. Adv. Mater. 2007, 19, 3439. https://doi.org/10.1002/adma.200702876
  2. Kurth, D. G. Sci. Technol. Adv. Mater. 2008, 9, 014103. https://doi.org/10.1088/1468-6996/9/1/014103
  3. Soto Bustamantea, E. A.; Galyametdinovb, Y. G.; Griesar, K.; Schuhmacher, E. Haase, W. Macromol. Chem. Phys. 1998, 199, 1337. https://doi.org/10.1002/(SICI)1521-3935(19980701)199:7<1337::AID-MACP1337>3.0.CO;2-U
  4. Chen, B.; Eddaoudi, M.; Hyde, S. T.; O'Keeffe, M.; Yaghi, O. M. Science 2001, 291, 1021. https://doi.org/10.1126/science.1056598
  5. Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249. https://doi.org/10.1002/adma.201002854
  6. Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334. https://doi.org/10.1002/anie.200300610
  7. Long, J. R.; Yagi, O. M. Chem. Soc. Rev. 2009, 38, 1312-1504 (2009 Metal-organic frameworks issue).
  8. Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040. https://doi.org/10.1126/science.1116275
  9. Choi, E.-Y.; Barron, P. M.; Novotney, R. W.; Hu, C.; Kwon, Y.- U.; Choe, W. Cryst. Eng. Comm. 2008, 10, 824. https://doi.org/10.1039/b720035h
  10. Xu, L.; Choi, E.-Y.; Kwon, Y.-U. Inorg. Chem. Commun. 2008, 11, 1190. https://doi.org/10.1016/j.inoche.2008.07.001
  11. Xu, L.; Choi, E.-Y.; Kwon, Y.-U. Inorg. Chem. 2007, 46, 10670. https://doi.org/10.1021/ic701393w
  12. Yang, Q.; Zhong, C. J. Phys. Chem. B 2006, 110, 655. https://doi.org/10.1021/jp055908w
  13. Frost, H.; Snurr, R. Q. J. Phys. Chem. C 2007, 111, 18794. https://doi.org/10.1021/jp076657p
  14. Lee, T. B.; Kim, D.; Jung, D. H.; Choi, S. B.; Yoon, J. H.; Kim, J.; Choi, K.; Choi, S.-H. Catal. Today 2007, 120, 330. https://doi.org/10.1016/j.cattod.2006.09.030
  15. Belof, J. L.; Stern, A. C.; Eddaoudi, M.; Space, B. J. Am. Chem. Soc. 2007, 129, 15202. https://doi.org/10.1021/ja0737164
  16. Kuc, A.; Enyashin, A.; Seifert, G. J. Phys. Chem. B 2007, 111, 8179. https://doi.org/10.1021/jp072085x
  17. Ko, N.; Kim, J. Bull. Korean Chem. Soc. 2011, 32, 2705. https://doi.org/10.5012/bkcs.2011.32.8.2705
  18. Choi, E.-Y.; Gao, C.; Lee, H.-J.; Kwon, O.-P.; Lee, S.-H. Chem. Commun. 2009, 7563.
  19. Choi, E.-Y.; Lee, H.-J.; Gao, C.; Kwon, O.-P.; Lee, S.-H. Macromol. Chem. Phys. 2010, 211, 1955. https://doi.org/10.1002/macp.201000316
  20. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. https://doi.org/10.1038/46248
  21. Eddaoudi, M. et al. Science 2002, 295, 469. https://doi.org/10.1126/science.1067208
  22. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. https://doi.org/10.1126/science.1083440
  23. Mulder, F.; Dingemans, T.; Wagemaker, M.; Kearley, G. Chem. Phys. 2005, 317, 113. https://doi.org/10.1016/j.chemphys.2005.06.003
  24. Kwon, O. P.; Lee, S. H.; Montemezzani, G.; Gunter, P. Adv. Funct. Mater. 2003, 13, 434. https://doi.org/10.1002/adfm.200304302
  25. Yuan, Z.; Lee, C.-W.; Lee, S.-H. Angew. Chem., Int. Ed. 2004, 43, 4197. https://doi.org/10.1002/anie.200453995
  26. Lee, S.-H.; Yuan, Z.; Lee, C.-W. Adv. Mater. 2003, 15, 251. https://doi.org/10.1002/adma.200390059
  27. www.ccdc.cam.ac.uk (CSD version 5.32).
  28. Connolly surfaces are constructed using Materials Studio (version 4.3.0.0), Accelrys Software Inc., 2008.
  29. Keegstra, E. M. D.; van der Mieden, V.; Zwikke, J. W.; Jenneskens, L. W.; Schouten, A.; Kooijman, H.; Veldman, N.; Spek, A. L. Chem. Mater. 1996, 8, 1092. https://doi.org/10.1021/cm950526w
  30. Meudtner, R. M.; Ostermeier, M.; Goddard, R.; Limberg, C.; Hecht, S. Chem. Eur. J. 2007, 13, 9834. https://doi.org/10.1002/chem.200701240
  31. Pollard, K. D.; Vittal, J. J.; Yap, G. P. A.; Puddephatt, R. J. J. Chem. Soc. Dalton Trans. 1998, 1265.
  32. Meudtner, R. M.; Ostermeier, M.; Goddard, R.; Limberg, C.; Hecht, S. Chem. Eur. J. 2007, 13, 9834. https://doi.org/10.1002/chem.200701240

Cited by

  1. Single Crystals of a 2-Dimensional Metal Coordination Polymer Containing Pendant Carbazole Groups vol.34, pp.12, 2012, https://doi.org/10.5012/bkcs.2013.34.12.3903
  2. Self-Assembly of Pseudorotaxane Structures from a Dicopper(II) Molecular Cage and Dicarboxylate Axles vol.57, pp.7, 2012, https://doi.org/10.1021/acs.inorgchem.7b02534