DOI QR코드

DOI QR Code

Syntheses, Structures and Luminescent Properties of Two Novel M(II)-Phen-SIP Supramolecular Compounds (M = Co, Ni)

  • Zhu, Yu-Lan (Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials) ;
  • Shao, Shuai (Faculty of Chemistry, Northeast Normal University) ;
  • Ma, Kui-Rong (Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials) ;
  • Tang, Xue-Ling (Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials) ;
  • Cao, Li (Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials) ;
  • Zhao, Hui-Chao (Faculty of Chemistry, Northeast Normal University)
  • Received : 2011.12.06
  • Accepted : 2012.01.11
  • Published : 2012.04.20

Abstract

Two metal compounds, $[Co(phen)_2(H_2O)_2]{\cdot}2H_2SIP{\cdot}2H_2O$ 1 and $[Ni(phen)_3]{\cdot}2H_2SIP{\cdot}3H_2O$ 2, have been obtained by incorporating 1,10-phenanthroline (phen) and 5-sulfoisophthalic acid monosodium salt ($NaH_2SIP$) ligands under hydrothermal conditions. Meanwhile, the two compounds were characterized by element analysis, IR, XRD, TG-DTA and single-crystal X-ray diffraction. Both 1 and 2 present 3D supramolecular structures via O-H${\cdots}$O hydrogen bond interactions. Luminescent properties for 1 and 2 were also studied. The compound 1 has two fluorescence emission peaks centered at 398 nm attributed to the intraligand emission from the SIP ligand and at 438 nm assigned to the combined interaction of intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand and ligand-to-metal-charge-transfer (LMCT) transitions (${\lambda}_{ex}$ = 233 nm). The compound 2 shows one emission band centered at 423 nm with a shoulder peak at 434 nm which may be originated from the intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand (${\lambda}_{ex}$ = 266 nm).

Keywords

References

  1. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem. Int. Ed. 1999, 38, 56. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E
  2. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. https://doi.org/10.1126/science.1083440
  3. Chen, B. L.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M. Angew. Chem. Int. Ed. 2005, 44, 4745. https://doi.org/10.1002/anie.200462787
  4. Rowsell, J. L. C.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 1304. https://doi.org/10.1021/ja056639q
  5. Ma, K. R.; Zhang, D. J.; Zhu, Y. L. Aust. J. Chem. 2010, 63, 452. https://doi.org/10.1071/CH09382
  6. Eubank, J. F.; Wojtas, L.; Hight, M. R.; Bousquet, T.; Kravtsov, V. C.; Eddaoudi, M. J. Am. Chem. Soc. 2011, 133, 17532. https://doi.org/10.1021/ja203898s
  7. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705.
  8. Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334. https://doi.org/10.1002/anie.200300610
  9. Song, L. F.; Jiang, C. H.; Jiao, C. L.; Zhang, J.; Sun, L. X.; Xu, F.; You, W. S.; Wang, Z. G.; Zhao, J. J. Cryst. Growth Des. 2010, 10, 5020. https://doi.org/10.1021/cg100599z
  10. Park, H.; Krigsfeld, G.; Parise, J. B. Cryst. Growth Des. 2007, 7, 736. https://doi.org/10.1021/cg060741x
  11. Liu, C. S.; Shi, X. S.; Li, J. R.; Wang, J. J.; Bu, X. H. Cryst. Growth Des. 2006, 6, 656. https://doi.org/10.1021/cg050336q
  12. Murugavel, R.; Korah, R. Inorg. Chem. 2007, 46, 11048. https://doi.org/10.1021/ic700977w
  13. Kulynych, A. D.; Shimizu, G. K. H. Cryst. Eng. Comm. 2002, 4, 102. https://doi.org/10.1039/b200503d
  14. Kim, D. S.; Forster, P. M.; Toquin, R. L.; Cheetham, A. K. Chem. Commun. 2004, 2148.
  15. Liu, Q. Y.; Xu, L. Eur. J. Inorg. Chem. 2006, 8, 1620.
  16. Zhu, Y. L.; Tang, X. L.; Ma, K. R.; Chen, H.; Ma, F.; Zhao, L. H. Bull. Korean Chem. Soc. 2010, 31, 1881. https://doi.org/10.5012/bkcs.2010.31.7.1881
  17. Wang, W. D.; Li, X. H. Acta Crystallogr. E 2005, 61, m1534. https://doi.org/10.1107/S1600536805021641
  18. Tang, X. L.; Zhu, W. L.; Zhu, Y. L.; Chen, H.; Ma, F. Journal of Huaiyin Teachers College (Natural Science) 2010, 9, 31.
  19. Xiao, H. P.; Morsali, A. Helv. Chim. Acta 2005, 88, 2543. https://doi.org/10.1002/hlca.200590192
  20. Yuan, J. X.; Xiong, J. Chem. Res. Chinese U. 2007, 23, 123. https://doi.org/10.1016/S1005-9040(07)60025-7
  21. Hu, M. L.; Miao, Q.; Shi, Q.; Ye, M. D. Acta Crystallogr. C 2004, 60, M460. https://doi.org/10.1107/S0108270104018645
  22. Xiao, S. S.; Zheng, X. J.; Yan, S. H.; Deng, X. B.; Jin, L. P. Cryst. Eng. Comm. 2010, 12, 3145. https://doi.org/10.1039/c001590c
  23. Zhang, B. Y.; Nie, J. J.; Xu, D. J. Acta Crystallogr. E 2008, 64, m986. https://doi.org/10.1107/S1600536808019843
  24. Cao, T. T.; Ma, Y.; Zhou, N.; Wang, C.; Liao, D. Z.; Yan, S. P. J. Coord. Chem. 2010, 63, 988. https://doi.org/10.1080/00958971003699752
  25. Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, Gottingen University, Germany, 1997.
  26. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Solution, Gottingen University, Germany, 1997.
  27. Tang, J. K.; Gao, E. Q.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P. Pol. J. Chem. 2000, 74, 137.

Cited by

  1. Two Cobalt(II) Supramolecular architectures based on 1,5-naphthalenedisulfonate: Syntheses, Structures and Photoluminescence vol.12, pp.7, 2015, https://doi.org/10.1007/s13738-015-0586-z
  2. directed iodoargentates with 1 to 3D frameworks vol.17, pp.45, 2015, https://doi.org/10.1039/C5CE01692D