DOI QR코드

DOI QR Code

Effects of Al Concentration on Structural and Optical Properties of Al-doped ZnO Thin Films

  • Kim, Min-Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Son, Jeong-Sik (Department of Visual Optics, Kyungwoon University) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • Received : 2011.10.24
  • Accepted : 2012.01.09
  • Published : 2012.04.20

Abstract

Aluminium (Al)-doped zinc oxide (AZO) thin films with different Al concentrations were prepared by the solgel spin-coating method. Optical parameters such as the optical band gap, absorption coefficient, refractive index, dispersion parameter, and optical conductivity were studied in order to investigate the effects of the Al concentration on the optical properties of AZO thin films. The dispersion energy, single-oscillator energy, average oscillator wavelength, average oscillator strength, and refractive index at infinite wavelength of the AZO thin films were found to be affected by Al incorporation. The optical conductivity of the AZO thin films also increases with increasing photon energy.

Keywords

References

  1. Hummer, K. Phys. Status Solidi B 1943, 56, 249.
  2. Wong, E. M.; Searson, P. C. Appl. Phys. Lett. 1999, 74, 2939. https://doi.org/10.1063/1.123972
  3. Oh, B.-Y.; Jeong, M.-C.; Moon, T.-H.; Lee, M. W.; Myoung, J.-M. J. Appl. Phys. 2006, 99, 124505. https://doi.org/10.1063/1.2206417
  4. Keis, K.; Magnusson, E.; Lindstrom, H.; Lindquist, S.-E.; Hagfeldt, A. Sol. Energy Mater. Sol. Cells 2002, 73, 51. https://doi.org/10.1016/S0927-0248(01)00110-6
  5. Song, Y.; Kim, E. S.; Kapila, A. J. Electron. Mater. 1995, 24, 83. https://doi.org/10.1007/BF02659626
  6. Ip, K.; Overberg, M. E.; Heo, Y. W.; Norton, D. P.; Pearton, S. J.; Kucheyev, S. O.; Jagadish, C.; Wiliams, J. S.; Wilson, R. G.; Zavada, J. M. Appl. Phys. Lett. 2002, 81, 3996. https://doi.org/10.1063/1.1524033
  7. Yim, K. G.; Cho, M. Y.; Jeon, S. M.; Kim, M. S.; Leem, J.-Y. J. Korean Phys. Soc. 2011, 58, 520. https://doi.org/10.3938/jkps.58.520
  8. Kaidashev, E. M.; Lorenz, M.; Wenckstern, H.; Rahm, A.; Semmelhack, H.-C.; Han, K.-H.; Benndorf, G.; Bundesmann, C.; Hochmuth, H.; Grundmann, M. Appl. Phys. Lett. 2003, 82, 3901. https://doi.org/10.1063/1.1578694
  9. Carcia, P. F.; Mclean, R. S.; Reilly, M. H.; Nunes, G. Appl. Phys. Lett. 2003, 82, 1117. https://doi.org/10.1063/1.1553997
  10. Gorla, C. R.; Emanetoglu, N. W.; Liang, S.; Mayo, W. E.; Lu, Y.; Wraback, M.; Shen, H. J. Appl. Phys. 1999, 85, 2595. https://doi.org/10.1063/1.369577
  11. Kim, Y.-S.; An, C. J.; Kim, S. K.; Song, J.; Hwang, C. S. Bull. Korean Chem. Soc. 2010, 31, 2503. https://doi.org/10.5012/bkcs.2010.31.9.2503
  12. Kuroyanagi, A. Jpn. J. Appl. Phys. 1989, 28, 219. https://doi.org/10.1143/JJAP.28.219
  13. Kim, M. S.; Yim, K. G.; Jeon, S. M.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Leem, J.-Y. Jpn. J. Appl. Phys. 2011, 50, 035003. https://doi.org/10.1143/JJAP.50.035003
  14. Kim, M. S.; Yim, K. G.; Leem, J.-Y.; Kim, S.; Nam, G.; Kim, D. Y.; Kim, S.-O.; Lee, D.-Y.; Kim, J. S.; Kim, J. S. J. Korean Phys. Soc. 2011, 59, 346. https://doi.org/10.3938/jkps.59.346
  15. Agura, H.; Suzuki, A.; Matsushita, T.; Aoki, T.; Okuda, M. Thin Solid Films 2003, 445, 263. https://doi.org/10.1016/S0040-6090(03)01158-1
  16. Berber, M.; Bulto, V.; Kliss, R.; Hahn, H. Scripta Mater. 2005, 53, 547. https://doi.org/10.1016/j.scriptamat.2005.04.047
  17. Williamson, G. B.; Smallman, R. C. Philos. Mag. 1956, 1, 34. https://doi.org/10.1080/14786435608238074
  18. Gupta, B.; Jain, A.; Mehra, R. M. J. Mater. Sci. Technol. 2010, 26(3), 223. https://doi.org/10.1016/S1005-0302(10)60037-0
  19. Fujihara, S.; Suzuki, A.; Kimura, T. J. Appl. Phys. 2003, 94, 2411. https://doi.org/10.1063/1.1594817
  20. Hong, R. J.; Huang, J. B.; He, H. B.; Fan, Z. X.; Shao, J. D. Appl. Surf. Sci. 2005, 242, 346. https://doi.org/10.1016/j.apsusc.2004.08.037
  21. Barret, C. S.; Massalski, T. B. Structure of Metals; Pergamon Press: Oxford, 1980.
  22. Kim, K. H.; Park, K. C.; Ma, D. Y. J. Appl. Phys. 1997, 81, 7764. https://doi.org/10.1063/1.365556
  23. Jain, A.; Sagar, P.; Mehra, R. M. Solid State Electron. 2006, 50, 1420. https://doi.org/10.1016/j.sse.2006.07.001
  24. Dragoman, D.; Dragoman, M. Optical Characterization of Solids; Springer-Verlag: Heidelberg, 2002.
  25. Wang, M.; Lee, K. E.; Hahn, S. H.; Kim, E. J.; Chung, J. S.; Shin, E. W.; Park, C. Mater. Lett. 2007, 61, 1118. https://doi.org/10.1016/j.matlet.2006.06.065
  26. Rozati, S. M.; Akesteh, S. Mater. Charact. 2007, 58, 319. https://doi.org/10.1016/j.matchar.2006.05.012
  27. Minami, T.; Kakumu, T.; Takeda, Y. Thin Solid Films 1996, 290- 291, 1. https://doi.org/10.1016/S0040-6090(96)09094-3
  28. Yakuphanoglu, F.; Cukurovali, A.; Yilmaz, I. Opt. Mater. 2005, 27, 1363. https://doi.org/10.1016/j.optmat.2004.09.021
  29. Abeles, F. Optical Properties of Solids; North-Holland Publishing Company: London, UK, 1972.
  30. Bandyopadhyay, S.; Paul, G. K.; Sen, S. K. Sol. Energy Mater. Sol. C 2002, 71, 103. https://doi.org/10.1016/S0927-0248(01)00047-2
  31. Shim, H. S.; Han, N. S.; Seo, J. H.; Park, S. M.; Song, J. K. Bull. Korean Chem. Soc. 2010, 31, 2675. https://doi.org/10.5012/bkcs.2010.31.9.2675
  32. Quasrawi, A. F.; Shukri Ahmad, M. M. Cryst. Res. Technol. 2006, 41, 364. https://doi.org/10.1002/crat.200510588
  33. Hodgson, J. N. Optical Absorption and Dispersion in Solids; Chapman and Hall Ltd.: 11 New fetter Lane London EC4, 1970.

Cited by

  1. Enhanced optical and electrical properties of boron-doped zinc-oxide thin films prepared by using the sol-gel dip-coating method vol.63, pp.9, 2013, https://doi.org/10.3938/jkps.63.1804
  2. Improved optical and electrical properties of sol–gel-derived boron-doped zinc oxide thin films vol.67, pp.3, 2013, https://doi.org/10.1007/s10971-013-3117-3
  3. Structural, optical, and electrical properties of ZnO thin films deposited by sol-gel dip-coating process at low temperature vol.10, pp.4, 2014, https://doi.org/10.1007/s13391-013-3312-y
  4. Magnetic and Magnetization Properties of Co-Doped Fe2O3 Thin Films vol.50, pp.8, 2014, https://doi.org/10.1109/TMAG.2014.2311826
  5. Photoluminescence and Structural Properties of Tin-doped ZnO Thin Films Deposited by Sol-Gel Dip Coating vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10306
  6. Catalytically Doped Semiconductors for Chemical Gas Sensing: Aerogel-Like Aluminum-Containing Zinc Oxide Materials Prepared in the Gas Phase vol.26, pp.20, 2016, https://doi.org/10.1002/adfm.201505355
  7. capacitors employing Al-doped ZnO top electrodes prepared by pulsed laser deposition under different oxygen pressures vol.55, pp.6S3, 2016, https://doi.org/10.7567/JJAP.55.06JB04
  8. Heavily-doped ZnO:Al thin films prepared by using magnetron Co-sputtering: Optical and electrical properties vol.69, pp.2, 2016, https://doi.org/10.3938/jkps.69.220
  9. Variation of index of refraction in cobalt doped ZnO nanostructures vol.122, pp.16, 2017, https://doi.org/10.1063/1.5001713
  10. Quality enhancement of AZO thin films at various thicknesses by introducing ITO buffer layer vol.28, pp.13, 2017, https://doi.org/10.1007/s10854-017-6671-6
  11. Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping vol.29, pp.8, 2018, https://doi.org/10.1007/s10854-018-8626-y
  12. Optical Characteristics of Zinc Oxide Films on Glass Substrates vol.85, pp.4, 2018, https://doi.org/10.1007/s10812-018-0709-2
  13. Effect of substrate rotation speed and off-center deposition on the structural, optical, and electrical properties of AZO thin films fabricated by DC magnetron sputtering vol.123, pp.16, 2018, https://doi.org/10.1063/1.5012883
  14. Structural, Linear and Third Order Nonlinear Optical Properties of Sol-Gel Grown Ag-CdS Nanocrystalline Thin Films vol.48, pp.2, 2019, https://doi.org/10.1007/s11664-018-6832-2
  15. Growth, optical, mechanical and nonlinear optical properties of furfurylaminium 2-chloro-5-nitrobenzoate single crystal vol.6, pp.4, 2019, https://doi.org/10.1088/2053-1591/aafb8b
  16. Adjustment of morphological and dielectric properties of ZnTiO3 nanocrystalline using Al2O3 nanoparticles vol.125, pp.1, 2019, https://doi.org/10.1007/s00339-018-2350-6
  17. NANOCRYSTALLINE ALUMINUM DOPED ZINC OXIDE COATED FIBER OPTIC FOR ULTRAVIOLET DETECTION vol.22, pp.3, 2013, https://doi.org/10.1142/s0218863513500379
  18. Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol-gel dip-coating method vol.35, pp.12, 2013, https://doi.org/10.1016/j.optmat.2013.06.048
  19. Optical characterization of poly (ethylene oxide)/zinc oxide thin films vol.169, pp.8, 2012, https://doi.org/10.1080/10420150.2014.931402
  20. Effect of60Co γ-irradiation on structural and optical properties of thin films of Ga10Se80Hg10 vol.95, pp.22, 2012, https://doi.org/10.1080/14786435.2015.1059518
  21. Surface plasmon resonance in nanostructured Ag incorporated ZnS films vol.5, pp.10, 2012, https://doi.org/10.1063/1.4933075
  22. Sol ageing effect on the structural, optical and electrical properties of Ga-doped ZnO thin films vol.31, pp.8, 2012, https://doi.org/10.1080/10667857.2015.1105576
  23. Tuning of refractive index in Al-doped ZnO films by rf-sputtering using oblique angle deposition vol.49, pp.29, 2012, https://doi.org/10.1088/0022-3727/49/29/295302
  24. Nanocolumnar CdS thin films grown by glancing angle deposition from a sublimate vapor effusion source vol.15, pp.3, 2012, https://doi.org/10.1016/j.jart.2017.02.003
  25. 플라즈마 표면 처리에 따른 AZO 박막의 특성 변화 vol.32, pp.2, 2012, https://doi.org/10.4313/jkem.2019.32.2.147
  26. Effect of Gd3+ doping on structural, morphological, optical, dielectric, and nonlinear optical properties of high-quality PbI2 thin films for optoelectronic applications vol.34, pp.16, 2012, https://doi.org/10.1557/jmr.2019.121
  27. An investigation on optical-nonlinear and optical limiting properties of CdS: an effect of Te doping concentrations for optoelectronic applications vol.30, pp.18, 2012, https://doi.org/10.1007/s10854-019-02097-z
  28. Thickness-dependent structural, spectral, linear, nonlinear and z-scan optical studies of V2O5 thin films prepared by a low-cost sol-gel spin coating technique vol.6, pp.9, 2012, https://doi.org/10.1088/2053-1591/ab2992
  29. Linear and nonlinear optical properties of sol-gel spin coated erbium-doped CdO thin films vol.570, pp.None, 2012, https://doi.org/10.1016/j.physb.2019.05.045
  30. Facile fabrication and characterization of modified spray deposited cadmium sulphide thin films vol.571, pp.None, 2012, https://doi.org/10.1016/j.physb.2019.06.051
  31. Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices vol.9, pp.7, 2019, https://doi.org/10.1007/s13204-019-00983-w
  32. Impact of Se doping on optical and third-order nonlinear optical properties of spray pyrolysis fabricated CdS thin films for optoelectronics vol.126, pp.7, 2020, https://doi.org/10.1007/s00340-020-07472-x
  33. Investigations of solid state, optical, NLO, dielectric and mechanical behaviour of Methyl para-Hydroxybenzoate crystal vol.226, pp.1, 2012, https://doi.org/10.1016/j.ijleo.2020.165738
  34. Effect of Gd3+ Doping on Linear and Nonlinear Optical Properties of PbI2/FTO Thin Films for Optoelectronic and Nonlinear Applications vol.31, pp.2, 2021, https://doi.org/10.1007/s10904-020-01765-6
  35. Novel synthesis, structure characterization, DFT and investigation of the optical properties of diphenylphosphine compound/zinc oxide [DPPB+ZnO]C nanocomposite thin film vol.28, pp.9, 2012, https://doi.org/10.1080/09276440.2020.1817682
  36. Characterization and Optimization of AZO Nanoparticles as Coatings for Flexible Substrates toward High IR Reflectivity vol.13, pp.51, 2021, https://doi.org/10.1021/acsami.1c22151