References
- Shchekotikhin, Y. M.; Nikolaeva, T. G.; Shub, G. M.; Kriven'ko, A. P. Pharmaceut. Chem. J. 2001, 35, 206. https://doi.org/10.1023/A:1010484013306
- Pyrko, A. N. Russ. J. Org. Chem. 2008, 44, 1215. https://doi.org/10.1134/S1070428008080198
- Kidwai, M.; Bhatnagar, D. Tetrahedron Lett. 2010, 51, 2700. https://doi.org/10.1016/j.tetlet.2010.03.033
- Tu, S.; Zhang, X.; Shi, F.; Li, T.; Wang, Q.; Zhu, X.; Zhang, J.; Xu, J. J. Heterocycl. Chem. 2005, 42, 1155. https://doi.org/10.1002/jhet.5570420618
- Gamage, S. A.; Spicer, J. A.; Atwell, G. J.; Finlay, G. J.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 1999, 42, 2383. https://doi.org/10.1021/jm980687m
- Palani, K.; Thirumalai, D.; Ambalavanan, P.; Ponnuswamy, M. N.; Ramakrishnan, V. T. J. Chem. Crystallogr. 2005, 35, 751. https://doi.org/10.1007/s10870-005-3880-2
- Wainwright, M. J. Antimicrob. Chemother. 2001, 47, 1.
- Srivastava, A.; Nizamuddin, C. Indian J. Heterocycl. Chem. 2004, 13, 261.
- Venkatesan, K.; Pujari, S. S.; Srinivasan, K. V. Synth. Commun. 2009, 39, 228.
- Balalaie, S.; Chadegani, F.; Darviche, F.; Bijanzadeh, H. R. Chin. J. Chem. 2009, 27, 1953. https://doi.org/10.1002/cjoc.200990328
- Li, L.-B.; Ji, S.-J.; Liu, Y. Chin. J. Chem. 2008, 26, 979. https://doi.org/10.1002/cjoc.200890208
- Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V. S.; Rao, Y. K. J. Mol. Catal. A: Chem. 2006, 247, 233. https://doi.org/10.1016/j.molcata.2005.11.048
- Kaya, M.; Yildirir, Y.; Celik, G. Y. Med. Chem. Res. 2011, 20, 293. https://doi.org/10.1007/s00044-010-9321-6
- Jin, T.-S.; Zhang, J.-S.; Guo, T.-T.; Wang, A.-Q.; Li, T.-S. Synthesis 2004, 2001.
- Wang, X.-S.; Zhang, M.-M.; Zeng, Z.-S.; Shi, D.-Q.; Tu, S.-J.; Wei, X.-Y.; Zong, Z.-M. ARKIVOC 2006, (ii), 117.
- Shi, D.-Q.; Ni, S.-N.; Yang, F.; Shi, J.-W.; Dou, G.-L.; Li, X.- Y.; Wang, X.-S. J. Heterocycl. Chem. 2008, 45, 653. https://doi.org/10.1002/jhet.5570450303
- Li, Y.-L.; Zhang, M.-M.; Wang, X.-S.; Shi, D.-Q.; Tu, S.-J.; Wei, X.-Y.; Zong, Z.-M. J. Chem. Res. 2005, 9, 600.
- Singh, S. K.; Singh, K. N. J. Heterocycl. Chem. 2011, 48, 69. https://doi.org/10.1002/jhet.508
- Hua, G.-P.; Li, T.-J.; Zou, X.; Tu, S.-J.; Zhu, S.-L.; Zhang, X.- J.; Ji, S.-J.; Zhang, Y. Chin. J. Org. Chem. 2005, 25, 1294.
- Wang, X.-S.; Zhang, M.-M.; Jiang, H.; Shi, D.-Q.; Tu, S.-J.; Wei, X.-Y.; Zong, Z.-M. Synthesis 2006, 4187.
- Kazahaya, K.; Hamada, N.; Ito, S.; Sato, T. Synlett 2002, 1535.
- Muthusamy, S.; Babu, S. A.; Gunanathan, C. Tetrahedron 2002, 58, 7897. https://doi.org/10.1016/S0040-4020(02)00897-9
- Mineno, T. Tetrahedron Lett. 2002, 43, 7975. https://doi.org/10.1016/S0040-4039(02)01864-6
- Nagarajan, R.; Perumal, P. T. Tetrahedron 2002, 58, 1229. https://doi.org/10.1016/S0040-4020(01)01227-3
- Chapmann, C. J.; Frost, C. G.; Hartley, J. P.; Whittle, A. J. Tetrahedron Lett. 2001, 42, 773. https://doi.org/10.1016/S0040-4039(00)02122-5
- Ali, T.; Chauhan, K. K.; Frost, C. G. Tetrahedron Lett. 1999, 40, 5621. https://doi.org/10.1016/S0040-4039(99)01045-X
- Loh, T.-P.; Hu, Q.-Y.; Ma, L.-T. J. Am. Chem. Soc. 2001, 123, 2450. https://doi.org/10.1021/ja005831j
- Roussel, P. G.; Turner, N. J.; Dinan, L. N. J. Chem. Soc., Chem. Commun. 1995, 933.
- Loh, T.-P.; Hu, Q.-Y.; Tan, K.-T.; Cheng, H.-S. Org. Lett. 2001, 3, 2669. https://doi.org/10.1021/ol016228o
- Ghosh, R.; Maiti, S. J. Mol. Catal. A: Chem. 2007, 264, 1. https://doi.org/10.1016/j.molcata.2006.08.086
- Jung, D. H.; Lee, Y. R.; Kim, S. H.; Lyoo, W. S. Bull. Korean Chem. Soc. 2009, 30, 1989. https://doi.org/10.5012/bkcs.2009.30.9.1989
- Wang, G.-W.; Miao, C.-B. Green Chem. 2006, 8, 1080. https://doi.org/10.1039/b604064k
- Shchekotikhin, Y. M.; Getmanenko, Y. A.; Nikolaeva, T. G.; Kriven'ko, A. P. Chem. Heterocycl. Comp. 2001, 37, 1228. https://doi.org/10.1023/A:1013845426393
Cited by
- Efficient and Convenient Synthesis of 1,8-Dioxodecahydroacridine Derivatives Using Cu-Doped ZnO Nanocrystalline Powder as a Catalyst under Solvent-Free Conditions vol.2013, pp.1537-744X, 2013, https://doi.org/10.1155/2013/575636
- Poly(4-Vinylpyridinium)Hydrogen Sulfate Catalyzed an Efficient and Ecofriendly Protocol for the One-Pot Multicomponent Synthesis of 1,8-Acridinediones in Aqueous Medium vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/850254
- Efficient, solvent-free synthesis of acridinediones catalyzed by CdO nanoparticles vol.41, pp.3, 2015, https://doi.org/10.1007/s11164-013-1284-z
- Poly(4-vinylpyridinium) hydrogen sulfate catalyzed synthesis of 12-aryl-12-hydro-5H-benzo[g]indeno[2,1-b]quinoline-6,11,13-trione derivatives vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-014-1552-6
- Indium(III)-Catalyzed Knoevenagel Condensation of Aldehydes and Activated Methylenes Using Acetic Anhydride as a Promoter vol.80, pp.6, 2015, https://doi.org/10.1021/acs.joc.5b00011
- Immobilization of organofunctionalized silica (SiMPTMS) with biphenyl-2,2′-dioic acid and investigation of its catalytic property for one-pot tandem synthesis of acridine-1,8-dione derivatives vol.14, pp.10, 2017, https://doi.org/10.1007/s13738-017-1156-3
- Catalyzed synthesis of functionalized pyrrolo[3,4-b]quinolines via one-pot three-component reactions under conventional and nonconventional conditions vol.148, pp.10, 2017, https://doi.org/10.1007/s00706-017-1979-8
- Green and efficient synthesis of acridine-1,8-diones and hexahydroquinolines via a KH2PO4 catalyzed Hantzsch-type reaction in aqueous ethanol vol.43, pp.5, 2017, https://doi.org/10.1007/s11164-016-2814-2
- Synthesis of (E)-2-amino-N′-benzylidenehexahydroquinoline-3-carbohydrazide pp.1573-501X, 2018, https://doi.org/10.1007/s11030-018-9892-6
- A combined experimental and computational studies of 3,3,6,6-Tetramethyl-9-(4-Methoxyphenyl)3,4,6,7,9,10 hexahydroacridine-1,8-dione pp.1362-3028, 2018, https://doi.org/10.1080/00268976.2018.1540804
- Amino acids and peptides as reactants in multicomponent reactions: modification of peptides with heterocycle backbones through combinatorial chemistry pp.1573-501X, 2019, https://doi.org/10.1007/s11030-018-9861-0
- Synthesis and characterization of the immobilized Ni–Zn–Fe layered double hydroxide (LDH) on silica-coated magnetite as a mesoporous and magnetically reusable catalyst for the preparation of benzylidenemalononitriles and bisdimedones (tetraketones) under green conditions vol.42, pp.11, 2018, https://doi.org/10.1039/C8NJ00788H
- Multi-component one-pot synthesis of unsymmetrical dihydro-5H-indeno[1,2-b]quinolines as new pH indicators vol.97, pp.1, 2012, https://doi.org/10.1016/j.dyepig.2012.11.002
- Competitive One-Pot Reactions: Simultaneous Synthesis of Decahydroacridine-1,8-diones and 1,8-Dioxo-octahydroxanthenes and Photophysical Characterization vol.44, pp.5, 2012, https://doi.org/10.1080/00397911.2013.831903
- Microwave-Irradiated Synthesis of 1,2-Dihydropyridines from N-Functionalized Enaminones and Enals through Domino Condensation and 6π-Azaelectrocyclization vol.89, pp.1, 2014, https://doi.org/10.3987/com-13-12844
- Water mediated reactions: TiO2and ZnO nanoparticle catalyzed multi component domino reaction in the synthesis of tetrahydroacridinediones, acridindiones, xanthenones and xanthenes vol.5, pp.22, 2015, https://doi.org/10.1039/c4ra13045f
- Introduction of taurine (2-aminoethanesulfonic acid) as a green bio-organic catalyst for the promotion of organic reactions under green conditions vol.6, pp.111, 2012, https://doi.org/10.1039/c6ra15432h
- Poly(vinyl pyridine)s: A Versatile Polymer in Catalysis vol.23, pp.4, 2019, https://doi.org/10.2174/1385272823666190320145410
- Synthesis of 9-Arylhexahydroacridine-1,8-diones Using Phosphate Fertilizers as Heterogeneous Catalysts vol.55, pp.9, 2012, https://doi.org/10.1134/s1070428019090185
- Acridine‐1,8‐diones: Synthesis and Biological Applications vol.6, pp.9, 2012, https://doi.org/10.1002/slct.202004536
- Synthesis of 1,8-Dioxo-decahydroacridine Derivatives via Ru-Catalyzed Acceptorless Dehydrogenative Multicomponent Reaction vol.86, pp.14, 2012, https://doi.org/10.1021/acs.joc.1c01075