DOI QR코드

DOI QR Code

Enhancement of DNA-mediated Energy Transfer from Ethidium to meso-Tetrakis(N-methylpyridinium-4-yl)porphyrin by Ca2+ Ion

  • 투고 : 2011.11.22
  • 심사 : 2011.12.29
  • 발행 : 2012.04.20

초록

The fluorescence intensity of DNA-intercalated ethidium with [ethidium]/[DNA base] being 0.005 was quenched upon the binding of another intercalating ligand, meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP). Addition of $Ca^{2+}$ enhanced the quenching efficiency. The range of separations between donor and acceptor molecules, within which total quenching occurs, was calculated using a one-dimensional resonance energy transfer mechanism to be 9.5 base-pairs or $32.3{\AA}$ in the absence of $Ca^{2+}$ ions. The distance increased to 18.7 base-pairs or about $63.6{\AA}$ in the presence $100{\mu}M$ $Ca^{2+}$. Considering that (1) $Ca^{2+}$ had little effect on the binding modes of ethidium and TMPyP, which was investigated by reduced linear dichroism and (2) spectral overlap between the emission spectrum of ethidium and the absorption spectrum of TMPyP was maintained in the presence of $Ca^{2+}$, contributions from orientation factor and spectral overlap to $Ca^{2+}$-induced enhancement in DNA mediated energy transfer was limited. Although there is no direct evidence, electron transfer along the DNA stem may accompany the observed fluorescence quenching. In this respect, DNA bound $Ca^{2+}$ act as a partially conducting medium.

키워드

참고문헌

  1. Boon, E. M.; Barton, J. K. Curr. Opin. Struct. Biol. 2002, 12, 320. https://doi.org/10.1016/S0959-440X(02)00327-5
  2. Wagenknecht, H.-A. Nat. Prod. Rep. 2006, 23, 973. https://doi.org/10.1039/b504754b
  3. Giese, B. Curr. Opin. Chem. Biol. 2002, 6, 612. https://doi.org/10.1016/S1367-5931(02)00364-2
  4. Rak, J.; Makowska, J.; Voityuk, A. A. Chem. Phys. 2006, 325, 567. https://doi.org/10.1016/j.chemphys.2006.02.002
  5. Sadowska-Aleksiejew, A.; Rak, J.; Voityuk, A. A. Chem. Phys. Lett. 2006, 429, 546. https://doi.org/10.1016/j.cplett.2006.08.050
  6. Kawai, K.; Kodera, H.; Osakada, Y.; Majima, T. Nature Chem. 2009, 1, 156. https://doi.org/10.1038/nchem.171
  7. Lilley, D. M. J.; Wilson, T. J. Curr. Opin. Chem. Biol. 2000, 4, 507. https://doi.org/10.1016/S1367-5931(00)00124-1
  8. Murata, S.-I.; Kuoeba, J.; Gryczynski, G. I.; Lakowicz, J. R. Biopolymers 2000, 57, 306. https://doi.org/10.1002/1097-0282(2000)57:5<306::AID-BIP70>3.0.CO;2-7
  9. Kang, J. S.; Lakowicz, J. R. J. Biochem. Mol. Biol. 2001, 34, 551.
  10. Malicka, J.; Gryczynski, I.; Fang, J.; Kusba, J.; Lakowicz, J. R. Anal. Biochem. 2003, 315, 160. https://doi.org/10.1016/S0003-2697(02)00710-8
  11. Lee, B. W.; Moon, S. J.; Youn, M. R.; Kim, J. H.; Jang, H. G.; Kim, S. K. Biophys. J. 2003, 85, 3865. https://doi.org/10.1016/S0006-3495(03)74801-2
  12. Yun, B. H.; Kim, J.-O.; Lee, B. W.; Lincoln, P.; Norden, B.; Kim, J.-M.; Kim, S. K. J. Phys. Chem. B 2003, 107, 9858. https://doi.org/10.1021/jp027828n
  13. Choi, J. Y.; Lee, J.-M.; Lee, H.; Jung, M. J.; Kim, S. K.; Kim, J.- M. Biophys. Chem. 2008, 134, 56. https://doi.org/10.1016/j.bpc.2008.01.006
  14. Jin, B.; Lee, H. M.; Lee, Y.-A.; Ko, J. H.; Kim, C.; Kim, S. K. J. Am. Chem. Soc. 2005, 127, 2417. https://doi.org/10.1021/ja044555w
  15. Jin, B.; Min, K. S.; Han, S. W.; Kim, S. K. Biophys. Chem. 2009, 144, 38. https://doi.org/10.1016/j.bpc.2009.06.003
  16. Clegg, R. M.; Murchie, A. I.; Zechel, A.; Lilley, D. M. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 2994. https://doi.org/10.1073/pnas.90.7.2994
  17. Deniz, A. A.; Dahan, M.; Grunwell, J. R.; Ha, T.; Faulhaber, A. E.; Chemla, D. S.; Weiss, S.; Schultz, P. G. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 3670. https://doi.org/10.1073/pnas.96.7.3670
  18. Murphy, M. C.; Rasnik, I.; Cheng, W.; Lohman, T. M.; Ha, T. Biophys. J. 2004, 86, 2530. https://doi.org/10.1016/S0006-3495(04)74308-8
  19. Karymov, M.; Daniel, D.; Sankey, O. F.; Lyubchenko, Y. L. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8186. https://doi.org/10.1073/pnas.0407210102
  20. Grunwell, J. R.; Glass, J. L.; Lacoste, T. D.; Deniz, A. A.; Chemla, D. S.; Schultz, P. G. J. Am. Chem. Soc. 2001, 123, 4295. https://doi.org/10.1021/ja0027620
  21. Heilemann, M.; Tinnefeld, P.; Sanchez Mosteiro, G.; Garcia Parajo, M.; Van Hulst, N. F.; Sauer, M. J. Am. Chem. Soc. 2004, 126, 6514. https://doi.org/10.1021/ja049351u
  22. Viasnoff, V.; Meller, A.; Isambert, H. Nano Letters 2005, 6, 101.
  23. Vyawahare, S.; Eyal, S.; Mathews, K. D.; Quake, S. R. Nano Letters 2004, 4, 1035. https://doi.org/10.1021/nl049660i
  24. Pasternack, R. F.; Caccam, M.; Keogh, B.; Stephenson, T. A.; Williams, A. P.; Gibbs, E. J. J. Am. Chem. Soc. 1991, 113, 6835. https://doi.org/10.1021/ja00018a019
  25. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, 2006.
  26. Jung, J.-A.; Jeon, S. H.; Han, S. W.; Lee, G. J.; Bae, I.-H.; Kim, S. K. Bull. Korean. Chem. Soc. 2011, 32, 2599. https://doi.org/10.5012/bkcs.2011.32.8.2599
  27. Nordén, B.; Seth, S. Appl. Spectrosc. 1985, 39, 647. https://doi.org/10.1366/0003702854250356
  28. Norden, B.; Kubista, M.; Kurucsev, T. Q. Rev. Biophys. 1992, 25, 51. https://doi.org/10.1017/S0033583500004728
  29. Lee, Y.-A.; Lee, S.; Cho, T.-S.; Kim, C.; Han, S. W.; Kim, S. K. J. Phys. Chem. B 2002, 106, 11351. https://doi.org/10.1021/jp025924i
  30. Lee, S.; Lee, Y.-A.; Lee, H. M.; Lee, J. Y.; Kim, D. H.; Kim, S. K. Biophys. J. 2002, 83, 371. https://doi.org/10.1016/S0006-3495(02)75176-X
  31. Wettig, S. D.; Li, C. Z.; Long, Y. T.; Kraatz, H. B.; Lee, J. S. Anal. Sci. 2003, 19, 23. https://doi.org/10.2116/analsci.19.23
  32. Rakitin, A.; Aich, P.; Papadopoulos, C.; Kobzar, Y.; Vedeneev, A. S.; Lee, J. S.; Xu, J. M. Phys. Rev. Lett. 2001, 86, 3670. https://doi.org/10.1103/PhysRevLett.86.3670
  33. Aich, P.; Labiuk, S. L.; Tari, L. W.; Delbaere, L. J.; Roesler, W. J.; Falk, K. J.; Steer, R. P.; Lee, J. S. J. Mol. Biol. 1999, 294, 477. https://doi.org/10.1006/jmbi.1999.3234
  34. Aich, P.; Skinner, R. J.; Wettig, S. D.; Steer, R. P.; Lee, J. S. J. Biomol. Struct. Dyn. 2002, 20, 93. https://doi.org/10.1080/07391102.2002.10506826