DOI QR코드

DOI QR Code

Photopatternable Conducting Polymer Nanocomposite with Incorporated Gold Nanoparticles for Use in Organic Field Effect Transistors

  • Huh, Sung (Department of Chemistry, Pohang University of Science and Technology) ;
  • Choi, Hyun-Ho (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Cho, Kil-Won (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kim, Seung-Bin (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2011.08.10
  • Accepted : 2011.12.19
  • Published : 2012.04.20

Abstract

We investigated a new method for patterning organic field-effect transistors (OFETs) using a photopatternable conducting polymer nanocomposite, consisting of poly(3-hexylthiophene) (P3HT)-coated gold nanoparticles (AuNPs) that had been modified with a photoreactive cinnamate group, to form P3HT-AuNP-CI. We found that the addition of the cinnamate group to the nanoparticle surface assisted the preparation of a solvent-resistive semiconducting film and preserved the P3HT ordering, which was interrupted by Au-P3HT interactions, as well as provided UV-controllable electrical properties. The P3HT-AuNPs-CI films could be microscale-patterned via a UV crosslinking photoreaction, represented as a promising photopatternable semiconductor material for use in advanced applications, with tunable electrical properties for fabrication of sub-micron and microscale electronic devices.

Keywords

References

  1. Sekitani, T.; Takamiya, M.; Noguchi, Y.; Nakano, S.; Kato, Y.; Sakurai, T.; Someya, T. Nat Mater. 2007, 6, 413-417. https://doi.org/10.1038/nmat1903
  2. Newman, C. R.; Frisbie, C. D.; da Silva, D. A.; Bredas, J. L.; Ewbank, C. P.; Mann, K. R. Chem. Mater. 2004, 16, 4436-4451. https://doi.org/10.1021/cm049391x
  3. Chabinyc, M. L.; Wong, W. S.; Salleo, A.; Paul, K. E.; Street, R. A. Appl. Phys. Lett. 2002, 81, 4260-4262. https://doi.org/10.1063/1.1524301
  4. Liu, S.; Briseno, A. L.; Mannsfeld, S. C. B.; You, W.; Locklin, J.; Lee, H. W.; Xia, Y.; Bao, Z. Adv. Funct. Mater. 2007, 17, 2891- 2896. https://doi.org/10.1002/adfm.200700484
  5. Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C. Appl. Phys. Lett. 1998, 72, 519-521. https://doi.org/10.1063/1.120807
  6. Behl, M.; Seekamp, J.; Wankovych, S.; Torres, C. M. S.; Zentel, R.; Ahopelto, J. Adv. Mater. 2002, 14, 588-591. https://doi.org/10.1002/1521-4095(20020418)14:8<588::AID-ADMA588>3.0.CO;2-K
  7. Hua, F.; Sun, Y.; Gaur, A.; Meitl, M. A.; Bilhaut, L.; Rotkina, L.; Wang, J.; Geil, P.; Shim, M.; Rogers, J. A.; Shim, A. Nano Lett. 2004, 4, 2467-2471. https://doi.org/10.1021/nl048355u
  8. Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Nature 2003, 421, 829-833. https://doi.org/10.1038/nature01390
  9. Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1171-1196. https://doi.org/10.1021/cr030076o
  10. Yoon, M.-H.; Yan, H.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 10388-10390. https://doi.org/10.1021/ja052488f
  11. Peng, X.; Horowitz, G.; Fichou, D.; Ganier, F. Appl. Phys. Lett. 1990, 57, 2013-2015. https://doi.org/10.1063/1.103994
  12. Touwslager, F. J.; Willard, N. P.; de Leeuw, E. M. Appl. Phys. Lett. 2002, 81, 4556-4558. https://doi.org/10.1063/1.1524031
  13. Weidkamp, K. P; Afzali, A.; Tromp, R. M.; Hamers, R. J. J. Am. Chem. Soc. 2004, 126, 12740-12741. https://doi.org/10.1021/ja045228r
  14. Charas, A.; Alccer, L.; Pimentel, A.; Conde, J. P.; Morgado, J. Chem. Phys. Lett. 2008, 455, 189-191. https://doi.org/10.1016/j.cplett.2008.02.087
  15. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; deLeeuw, D. M. Nature 1999, 401, 685-688. https://doi.org/10.1038/44359
  16. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617-1622. https://doi.org/10.1002/adfm.200500211
  17. Zhai, L.; McCullough, R. D., J. Mater. Chem. 2004, 14, 141-143. https://doi.org/10.1039/b305407a
  18. Huh, S.; Kim, S. B. J. Phys. Chem. C 2010, 114, 2880-2885. https://doi.org/10.1021/jp908743y
  19. Egerton, P. L.; Hyde, E. M.; Trigg, J.; Payne, A.; Mijovic, M. V.; Reiser, A., J. Am. Chem. Soc. 1981, 103, 3859-3863. https://doi.org/10.1021/ja00403a039
  20. Huh, S.; Chae, B.; Kim, S. B. J. Colloid Interface Sci. 2008, 327, 211-215. https://doi.org/10.1016/j.jcis.2008.07.051
  21. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 7, 801-802.
  22. Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Chem. Soc. Chem. Commun. 1995, 16, 1655-1656.
  23. Glogowaski, E.; He, J.; Russell, T. P.; Emrick, T. Chem. Commun. 2005, 4050-4052.
  24. Elsenbaumer, R. L.; Shackeltte, L. W. In Handbook of Conducting Polymers; Skotheim, T. A., Ed.; Marcel Dekker, Inc.: New York, Vol 1, 1986.
  25. Jenekhe, S. A. Nature 1986, 322, 345-347. https://doi.org/10.1038/322345a0
  26. Chung, T.-C.; Kaufman, J. H.; Heeger, A. J.; Wudl, F. Phys. Rev. B 1984, 30, 702-710. https://doi.org/10.1103/PhysRevB.30.702
  27. McCullough, R. D.; Tristram-Nagle, S. P.; Lowe, R. D.; Jayaraman, M. J. Am. Chem. Soc. 1993, 115, 4910-4911. https://doi.org/10.1021/ja00064a070
  28. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293-346. https://doi.org/10.1021/cr030698+
  29. Yong, C.; Renyuan, Q. Sol. St. Commun. 1985, 54, 211-213. https://doi.org/10.1016/0038-1098(85)91068-3
  30. Teng, M. Y.; Lee, K. R.; Liaw, D. J.; Lai, J. Y. Polymer 2000, 41, 2047-2052. https://doi.org/10.1016/S0032-3861(99)00340-7
  31. Hostetler, M. J.; Templeton, A. C.; Murray, R. W. Langmuir 1999, 15, 3782-3789. https://doi.org/10.1021/la981598f
  32. Templeton, A. C.; Hostetler, M. J.; Kraft, C. T.; Murray, R. W. J. Am. Chem. Soc. 1998, 120, 1906-1911. https://doi.org/10.1021/ja973863+
  33. Porter, L. A., Jr.; Ji, D.; Westcott, S. L.; Graupe, M.; Czernuszewicz, R. S.; Halas, N. J.; Lee, T. R. Langmuir 1998, 14, 7378-7386. https://doi.org/10.1021/la980870i
  34. Perny, S.; Barny, P. L. Liq. Cryst. 2000, 27, 329-340. https://doi.org/10.1080/026782900202778
  35. Chae, B.; Lee, S. W.; Jung, Y. M.; Ree, M.; Kim, S. B. Langmuir 2003, 19, 687-695. https://doi.org/10.1021/la020453c
  36. Prosa, T. J.; Winokur, M. J.; Moulton, J.; Smith, P.; Heeger, A. J. Macromolecules 1992, 25, 4364-4372. https://doi.org/10.1021/ma00043a019
  37. Ruiz, V.; Nicholson, P. G.; Jollands, S.; Thomas, P. A.; Macpherson, J. V.; Unwin, P. R. J. Phys. Chem. B 2005, 109, 19335-19344. https://doi.org/10.1021/jp053647k
  38. Nicholson, P. G.; Ruiz, V.; Macpherson, J. V.; Unwin, P. R. Phys. Chem. Chem. Phys. 2006, 8, 5096-5105. https://doi.org/10.1039/b605691c
  39. Park, Y. D.; Lim, J. A.; Kwak, D.; Cho, J. H.; Cho, K. Electrochem. Solid-State Lett. 2009, 12, H312-H314. https://doi.org/10.1149/1.3152571
  40. Trajkovska, A.; Kim, C.; Marshall, K. L.; Mourey, T. H.; Chen, S. H. Macromolecules 2006, 39, 6983-6989. https://doi.org/10.1021/ma060959s
  41. Sandberg, H.; Frey, G.; Shkunov, M.; Sirringhaus, H.; Friend, R. H. Langmuir 2002, 18, 10176-10182. https://doi.org/10.1021/la0261444
  42. Zen, A.; Saphiannikova, M.; Neher, D.; Asawapirom, U.; Scherf, U. Chem. Mater. 2005, 17, 781-786. https://doi.org/10.1021/cm040183e

Cited by

  1. Effect of gold nanoparticles on the structural and optical stability of poly (3-hexylthiophene) vol.123, pp.None, 2012, https://doi.org/10.1016/j.polymdegradstab.2015.11.006